
Web Application Security:

A Survey of Prevention Techniques

Against SQL Injection1.

Uzi Ben-Artzi Landsmann and Donald Strömberg
uzi-b-a@dsv.su.se, donald-s@dsv.su.se

Department of Computer and Systems Sciences
Stockholm University / Royal Institute of Technology

June 2003

1This thesis corresponds to 20 weeks of full-time work

Abstract

SQL injection is an attack method used by hackers to retrieve, manipulate,
fabricate or delete information in organizations’ relational databases through
web applications. Information in databases usually constitutes an organiza-
tion’s most valuable asset, and attacks on it could threaten the organization’s
integrity, availability and confidentiality. SQL injection techniques are sim-
ple and require no special tools or expertise from the attacker, except for
some basic database and server-script language knowledge. Despite the fact
that such harm can be inflicted using such simple means, it seems that only
minimal resources are invested in developing security standards and in-built
security measures in web applications. Organizations are using a reactive
approach towards these threats, instead of a proactive approach that would
help avoiding them. We have surveyed SQL injection and existing preven-
tion techniques in order to develop a consistent terminology and to find out
under which circumstances they are applicable and to what extent they can
be claimed effective. Most of the information we gathered was found on web
sites which discuss web security, whether in advisories, articles, papers or
simply exploit guides aimed for hackers. It turns out that the area of SQL
injection has never been properly surveyed from a scientific perspective. We
can consequently say that the combination of countermeasures implemented
during the development process is vital for making secure web applications.

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Corporations and Web Applications 1
1.1.2 Security . 1
1.1.3 Web Applications and Security 2
1.1.4 Web Applications and Data Storage 4
1.1.5 SQL Injection . 5

1.2 Problem . 6
1.3 Purpose . 6
1.4 Scope . 7
1.5 Methodology . 8

1.5.1 Method . 8
1.5.2 Method for Data Collection 9
1.5.3 Method Criticism . 10

1.6 Goals and Expected Results 10
1.7 Related Work . 11
1.8 Artifacts . 12
1.9 Outline . 12

2 Web Applications 14
2.1 Domain . 14

2.1.1 Web Services . 14
2.1.2 Business Web Applications 14

2.2 Architecture . 15
2.2.1 Client-Server . 15
2.2.2 The Client-Server Architecture and Layers 16
2.2.3 The Client-Server Architecture and Tiers 17
2.2.4 General Web Application Architecture 18

2.3 Components . 19
2.3.1 Component Types . 19
2.3.2 A General Business Web Application Model 20

2.4 Communication . 22
2.4.1 Information . 22
2.4.2 Content . 22
2.4.3 Protocol . 23
2.4.4 URL Encoding . 24

2.5 Assets . 24

3 RDBMS and SQL 26
3.1 RDBMS . 26
3.2 SQL . 26

3.2.1 DML . 27

i

3.2.2 DDL . 29
3.3 Query Techniques . 30

3.3.1 Dynamic SQL . 30
3.3.2 Static SQL . 30

3.4 Error Messages . 31
3.5 Security . 31

3.5.1 Computer-Based Controls 32
3.5.2 Non-Computer-Based Controls 34

4 Computer Security 35
4.1 Assets . 35
4.2 Services . 35
4.3 Threats . 36
4.4 Mechanisms . 36
4.5 Vulnerabilities . 37
4.6 Relation Between Security Components 37

5 SQL Injection 38
5.1 Introduction . 38

5.1.1 Scope . 38
5.1.2 Basics . 39
5.1.3 Attack Procedure . 40

5.2 Nomenclature . 41
5.2.1 Security Services . 42
5.2.2 Means . 43
5.2.3 Attack Methods . 43
5.2.4 Prerequisites . 44
5.2.5 Vulnerabilities . 46
5.2.6 Countermeasures . 48

5.3 SQL Injection Security Model 50
5.4 SQL Injection Attack Examples 50

6 Model Analysis 57
6.1 Aspects of the Model . 57

6.1.1 Static vs. Dynamic SQL 57
6.1.2 RDBMS Support . 57
6.1.3 Input Validation . 58

6.2 How to use the Model . 59
6.3 Aspects of Existing Prevention Techniques 60
6.4 Countermeasure Comparison 61

ii

7 Epilogue 65
7.1 Discussion . 65
7.2 Future Work . 66
7.3 Concluding Remarks . 67

A Glossary 74

B Internet Links 77

iii

List of Figures

1 Components within layers . 20
2 Relation between security components 37
3 Security layers in web applications [62] 39
4 A login form . 54

List of Tables

1 SQL syntax . 27
2 SQL injection security model, attack methods a1.1 and a1.2 . 51
3 SQL injection security model, attack methods a1.3 and a1.4 . 52
4 SQL injection security model, attack methods a1.5 and a2 . . 53
5 Countermeasure comparison 62

iv

1 Introduction

1.1 Background

1.1.1 Corporations and Web Applications

Corporations have constantly striven to enhance their communication ca-
pabilities, allowing more efficient information exchange within their own
organizations as well as between partners in their value chains, i.e. suppli-
ers, distributors and customers. In addition, corporations have sought new
alternatives to gain more competitive advantages: managing customer rela-
tionships, doing business, creating alliances, moving into new markets, and
promoting their products and services. [62]

The evolution of the Internet has laid a foundation for the development
and usage of new categories of information technology systems operating on
the web. According to Jaquith [23] and The Open Web Application Project
(OWASP1) [49] and Spett [62], these systems are often referred to as web
applications and range in complexity from simple implementations, e.g. per-
sonal web pages, to advanced business applications: informational web sites,
intranets, extranets, e-commerce and business-to-business systems. Web ap-
plications provide connectivity, access to information and online services,
introducing new opportunities for corporations to realize their ambitions
mentioned above. Therefore, corporations were not late to exploit these
possibilities and, in a steadily increasing number, they have begun to take
advantage of web applications by connecting their systems to the web.

Spett as well as Levine [29] emphasize that web applications are inte-
grated with corporations networking infrastructure and typically encompass
the use of commercial components, e.g. web servers and application servers.
In addition, application logic components process input, perform calcula-
tions and generate output based on received and stored data.

1.1.2 Security

Historically, information security was primarily concerned with administra-
tive and physical means, e.g. filing cabinets where documents could be
locked in. With the widespread usage of data processing equipment, an ev-
ident need for protecting files and other information stored on computers
began to concern information security. This resulted in the generic name
computer security, which encompasses the collection of tools designed to
protect data and defend systems against threats. [64]

Gollmann [18] defines computer security as the prevention and detec-
tion of unauthorized actions performed by users of a computer system. In
general, three key objectives or security services are pointed out: confiden-
tiality, integrity and availability. In order to protect assets in computer

1A glossary of words shown in italics can be found in appendix A on page 74.

1

systems with respect to security services, several mechanisms have been
invented, including encryption, authentication and access control. When
implementing computer security in systems one must consider important de-
sign parameters, including within which layers security mechanisms should
be implemented2.

According to Spett [62], the field of computer security has evolved over
time. When the only means of compromising data was by infecting a per-
sonal computer with a virus contained on a floppy disk, desktop security
was applied. In parallel with the expansion of the Internet corporations
developed internal and external networks, resulting in a need for network
security. As corporations intensified the offering of services through ap-
plications, computer security reached its current age, also concerning the
application layer of systems: application security.

Security professionals and corporations have, according to Levine [29]
and OWASP [49] and Spett, traditionally spent a major part of their secu-
rity efforts and resources on operating system and network security. Assess-
ment services heavily relied on automated tools to find holes in those layers.
Conventional security measures typically included network monitoring and
logging, authentication protocols, firewalls, intrusion detection systems and
encryption techniques. Furthermore, special security measures, e.g. access
control mechanisms, have been integrated in Database Management Sys-
tems (DBMS), to ensure database security. As a result, network inherent
components such as routers and web servers as well as operating systems and
DBMSs are in general easy to protect. Attack methods aimed at these com-
ponents have been known for some time and standardized countermeasures
have been developed and implemented to prevent and detect such threats
effectively.

1.1.3 Web Applications and Security

According to OWASP [49], the increased accessibility to corporations’ sys-
tems through web applications has also had an impact on the ever increasing
need for computer security. Web applications pose unique security challenges
to businesses and security professionals in that they expose the integrity of
their data to the public.

Web application security is a concept that originates from application
security and mainly comprises of threats that exploit web application vulner-
abilities. Jaquith [23] and OWASP and Spett [62] conclude that among the
new threats that have emerged, many concern the application layer of web
applications, including illegal access to information, data manipulation and
theft. Several attempts have been made to identify and classify the threats.
Among others, Jaquith and Spett divided the threats into groups aiming

2Gollman also discusses four other design parameters, but we consider them to be less
relevant in this thesis.

2

at different levels of abstraction within the attacked system. Moreover, in-
stead of focusing on abstraction levels, OWASP [50] tried to categorize the
vulnerabilities into a list of broad types. Regardless of the approach chosen,
the classified threats all concern the application layer.

Basically, most web servers are separated from clients by firewalls. How-
ever, from a security perspective, web applications offer users legitimate
channels through firewalls into corporations’ systems. When launched from
within the application logic, attacks are in general harder to detect and
protect against. [23, 49, 50, 62]

The traditional approach mentioned in section 1.1.2 has therefore been
proven insufficient for systems that offer services through web applications.
While conventional security measures were sufficient for older systems and
applications, they seem to be both outdated and ineffective in compensating
for vulnerabilities in web applications. During the last years, an increase of
vulnerabilities inherent in web applications have been noted and report of
attacked systems have frequently published. [16, 18, 22, 29, 43, 51, 52, 58, 62]

Another issue of concern is the choice between a reactive or proactive se-
curity approach. With a reactive approach, security measures are in general
added in the later development stages or after an application has been de-
veloped and delivered, including firewalls, anti-virus software, service packs,
emergency fixes and security updates. A proactive approach, on the other
hand, implies a structured approach in which security measures are added
during development and are heavily tested according to a strong security
policy [21, 53, 62]. One reason for the strategy of using a reactive ap-
proach might be related to short term economic profits, and the relative
ease of adding third party security tools and patches. Implementing secu-
rity policies and routines during the system development process, and per-
forming code inspections and extensive testing may require more effort and
resources [18, 38, 42, 45, 46, 49, 59, 68]. However, the proactive security
approach should be preferred, since many web application vulnerabilities
stem from improper coding in the application logic [21, 53, 62].

According to Gollman, a large community of hackers use their knowledge
and experience frequently to find application layer vulnerabilities in order
to commit attacks on organizations’ systems through that layer. Their tools
are widely spread over the Internet. This is further supported by Spett, who
points out that every form of corporation acting on the Internet has become
a possible target of such attacks. Those corporations may have succeeded
in securing the access layers, transport layers and network layers, but may
still end up with insecure systems since application level attacks can bypass
security mechanisms in those layers.

3

1.1.4 Web Applications and Data Storage

The most serious threats that web applications may be exposed to, as
Eizner [12] and Harper [21] and Newman [42] point out, concern attacks
aimed directly at data storage. Web servers communicate with back-end
running systems such as Relational Database Management Systems (RDBMS),
that offer persistent storage of data in relational databases. Relational
databases are crucial components in web applications since the most valuable
information assets, corporate and customer data, are stored there. Success-
ful attacks can cause database content and structure to be exposed, manip-
ulated and compromised [12, 21, 42].

RDBMSs offer security mechanisms, e.g. authentication, authorization
and access control, that when properly configured can protect stored data
against illegitimate usage [10]. However, Andrews [2] and Peikare and Fo-
gie [44] and Lie [33] point out that in web applications, application logic
components open database connections through web servers to RDBMS,
which in turn communicate with databases. Since web applications offer
open channels to corporations web servers, the same applications therefore
conduct legitimate ways, or channels, for users to fetch and manipulate data
in corporate databases.

Even though extensive database security mechanisms have been imple-
mented, every web application must act upon the channels mentioned above
and make sure that only legitimate usage is allowed. Unfortunately, lack of
security awareness while implementing database connections can lead to
open holes in the system. [23, 29, 42, 62, 63]

While security flaws in the RDBMS are most certainly often to be found
due to improper security configuration, a common mistake is to think of the
RDBMS as being improperly secured. Unfortunately, as Peikare and Fogie
along with Lie emphasize, an RDBMS accepts any valid and well-formed
query built using a Structured Query Language (SQL), and as long as users
have the required privileges, queries are executed on a relational database
that contains the data and the result is returned. This property is one factor
contributing to a new menace against relational databases connected to the
web.

A chain is never stronger than its weakest link. The RDBMS, web server
and application logic components are all parts of a larger system, the web
application. A strong security policy for the database therefore cannot com-
pensate for poor security in the application logic, since the overall security
in the system will be equal to the component with the weakest security.

4

1.1.5 SQL Injection

SQL injection3 is a particulary dangerous threat that exploits application
layer vulnerabilities inherent in web applications. Instead of attacking in-
stances such as web servers or operating systems, the purpose of SQL injec-
tion is to to attack RDBMSs, running as back-end systems to web servers,
through web applications. [12, 21, 36, 42, 49, 53, 62]

More specifically, attackers can bypass existing security mechanisms im-
plemented to enforce security services, and may therefore gain access to and
manipulate information assets outside their privileges. This is accomplished
by modifying input parameters expected in fields of forms embedded in web
pages, in order to change the underlying queries built with SQL and passed
to the database through the web server. Another method is to insert arbi-
trary SQL directly in the query string potion of an URL in the address field
of web browsers. [2, 5, 12, 13, 14, 15, 21, 28, 32, 36, 38, 43, 44, 58, 62, 63]

It is difficult to prevent SQL injection attacks through a reactive secu-
rity approach, mentioned in section 1.1.3, still commonly used among many
developers. In addition, SQL injection requires neither specialized tools nor
extensive experience and knowledge. A web browser is sufficient in order
to perform SQL injection attacks against web applications, as long as the
attacker has basic knowledge of HTTP, relational databases and SQL [12].
Even if the RDBMS is secured through proper configuration, the database
can still be vulnerable to SQL injection attacks conducted by malicious
users, as mentioned in section 1.1.4. As also mentioned there, SQL queries
are executed in RDBMSs as long as they are valid and well-formed and users
have the required privileges. Therefore, while security flaws are often to be
found in the RDBMS due to improper security configuration, Andrew [2]
and Peikari and Fogie [44] and Liu [33] conclude that one must instead con-
sider that database security as a single measure is not sufficient to guarantee
protection of data in web applications.

Every web application, using a relational database, can theoretically be
a subject for SQL injection attacks. Those databases usually contain cor-
porations’ most valuable information assets: corporate and customer data.
Those data are vital for the functions of a corporation’s web applications,
but often even more crucial and valuable for the corporation itself: user
credentials, sensitive financial information, preferences, invoices, payments,
inventory data etc. If successful, SQL injection attacks may therefore result
in exposure of and serious impact on the corporations most valuable infor-
mation assets. These attacks may in the worst case result in a completely
destroyed database schema, which in turn may affect a corporation’s ability
to perform business. [12, 21, 27, 42]

3We have found several synonyms to SQL injection, but since most authors use this
term, we will use it throughout this thesis.

5

1.2 Problem

Given the perspective of time passed since web applications entered the
commercial market, SQL injection is hardly a new threat [49]. The prob-
lem has been described by many security professionals and hackers, and
the information is widely spread on the Internet. Many attempts have also
been made in order to find countermeasures that can contend with and
overcome SQL injection threats. These countermeasures build on earlier
work that covers broader aspects of computer security, including database
security issues mentioned above, and the software development process it-
self. In addition, the countermeasures constitute new solutions regarding
application layer vulnerabilities in general and SQL injection threats in par-
ticular. [2, 3, 5, 12, 13, 14, 18, 21, 28, 32, 36, 38, 41, 43, 45, 49, 50, 58, 62, 63]

It even seems to be a somewhat common assumption among writers to
think that protecting web applications from SQL injection is an easy task,
as long as you have an understanding of the SQL injection threat [42, 63].

Nevertheless, corporations, security professionals and hackers continue to
announce that SQL injection vulnerabilities are inherent in web applications
and reports of compromised applications are frequently published [5, 8, 23,
29, 36, 49]. This clearly indicates that there still seems to exist a lack of
awareness, knowledge and respect of SQL injection threats inherent in web
applications among security professionals.

One reason might be that software development companies and third
party vendors do not take a structured security approach when developing
web applications, as mentioned in section 1.1.2. Another reason is that soft-
ware developers compete in introducing software to the market. We can
think of two other reasons as well. First, the vast amount of information
published, including detailed step-by-step guides of how to attack web appli-
cations with SQL injection, is of course also available for potential attackers.
The other reason, further discussed in section 1.7, constitutes the problem
for this thesis: we think that the area of SQL injection has never been
properly surveyed and that the countermeasures and prevention techniques
proposed has not always been systematically composed. We believe that
some of the proposed prevention techniques may contain weaknesses and
that they therefore can not adequately cope with SQL injection.

1.3 Purpose

We intend to perform an extensive literature survey in order to chart SQL
injection and capture as many aspects of the area as we can find. Along
the way, a consistent terminology will be created, existing attack methods,
countermeasures and prevention techniques compiled, and security aspects

6

regarding SQL injection expressed in terms of general criteria4. A general
security model for SQL injection will be created and used for evaluation of
existing prevention techniques.

1.4 Scope

Multi-part security standards such as Common Criteria [46, 47, 48] attempt
to assure a high level of security in systems by defining security requirements
that can be used for both development of computer based products and for
security validation assessments. Such standards are therefore meant for use
by both quality managers and developers as well as customers. Additionally,
development disciplines like Software Engineering involve best practices of
software development and cover areas such as process improvement and
all aspects of software development processes and activities. By following
this structured approach in software development, programs will be more
predictable and have higher quality and security [59].

While these standards and disciplines may be important when trying to
achieve a higher degree of quality and security in software products, includ-
ing web applications, an examination of them lies outside the scope of this
thesis. Our focus rest mainly on technical aspects of a demarcated security
problem and its existing prevention techniques, and we consider therefore
security standards, policies and development disciplines to be overall issues
concerning a software development organization as a whole.

It should be stressed that the problem of SQL injection applies to any ap-
plication that directly or indirectly communicates with an RDBMS, though
we intend in this thesis to limit our research and discussions to web applica-
tions. Web applications can take many forms, as pointed out in section 2.1
on page 14. While the results of this thesis will be applicable to any ap-
plication that uses an RDBMS for persistent storage of data, connected to
the web or not, we intend to focus on highly sophisticated web applications,
also referred to as business web applications5 and further discussed in sec-
tion 2.1.2 on page 14. The main reasons for this strategy is that corporate
databases seem to be attacked more often using SQL injection and the con-
sequences of successful SQL injection attacks affect corporations harder with
respect of the inherent assets in their web applications. SQL injection has
therefore mainly been discussed in that context by authors [12, 21, 27, 42].

Furthermore, as discussed in section 2.1.1 on page 14, we do not consider
the concept of web services to be a part of our definition of a general web
application, defined in section 2 on page 14.

4We use the term general in several sections, and by that we mean containing all
components found during our survey, classified into coherent groups using a consistent
terminology.

5Unless stated otherwise, we will refer to business web applications when we use the
term web application.

7

Our examples of SQL injection attacks will not consider how data is
stored in different formats, e.g. XML in an RDBMS, as discussed in sec-
tion 3.1 on page 26.

We will not attempt to present new countermeasures or prevention tech-
niques for SQL injection. In addition, when examining SQL injection, we
will not consider programming language specific issues or different relational
database management system vendors. Rather, we will in our survey and
discussions attempt to approach SQL injection with a focus on general char-
acteristics and mechanisms inherent in business web applications and rela-
tional database management systems.

1.5 Methodology

Our research is based on an extensive literature study which surveys SQL
injection, as mentioned in section 1.3. We attempt to chart and gain as large
understanding of the area as we can. Along the way, we intend to develop a
uniform terminology of SQL injection and capture its characteristics, attack
methods, countermeasures and existing prevention techniques. The survey
also covers conditions under which SQL injection works and within which
context it operates. Therefore, web applications, relational databases and
SQL will also be examined, though from a security perspective. We also
think it is necessary to briefly review the area of computer security.

The research is qualitative in nature, since it does not attempt to measure
the effects of SQL injection attack methods and the effectiveness of existing
prevention techniques empirically. Instead, we theorize about the effects
of attack methods and the effectiveness of existing prevention techniques.
As discussed in section 1.7, we believe that SQL injection has never been
studied comprehensively and the existing countermeasures and prevention
techniques have not been systematically composed. Therefore, we consider
ourselves approaching an area unknown area, and under such circumstances
a qualitative approach is the natural choice [20].

1.5.1 Method

We have gained inspiration and guidance from the field of security when
choosing a proper method for conducting our survey. The steps in our
method are therefore influenced by the notion of risk analysis, a process
with high bearing on security issues, as stated by Anderson [1] and Connolly
et al. [10] and Sommerville [59]. According to Sommerville, risk analysis as
viewed in the context of software systems involves analyzing a system and its
operational environment. The objective is to discover potential threats, their
root causes and associated risks. While Sommerville emphasizes critical
systems, we think that risk analysis can be used for any software system. A
general web application is considered to be our system and we will focus on

8

threats and risks associated with SQL injection. We considered the stages
in the process of risk analysis as defined by Connolly et al. suitable as a
base for choosing steps in our method, described below.

In the first step, we will profile web applications by exploring their
scope, implementations, architecture, inherent components and communi-
cation principles. We also identify assets that we believe many web appli-
cations share.

In step two, basic principles of RDBMS systems as well as SQL will be
explored. In addition, we identify security issues that we consider relevant.

Step three involves studying general aspects of computer security.
Step four constitutes our survey over SQL injection in which we classify

the area in terms of general criteria. Along the way, we try to capture
as many general aspects as we can: definitions, characteristics, conditions,
vulnerabilities, attack methods and countermeasures. The different ways in
which SQL injection-related attacks may be carried out on web applications
are examined, and the attack methods will be divided into broader groups
related to threats, and mapped to different security services, e.g. availability,
confidentiality and integrity. In this section, we also present our general
security model for SQL injection based on the general criteria. Finally, we
intend to identify which contributors have taken which aspects of our model
into account in their documents.

In step five, we analyze our security model constructed in step four. We
also conduct an examination of an existing prevention technique against SQL
injection in the perspective of our security model. Then, we try to identify
required countermeasures needed in a prevention technique to adequately
cope with SQL injection. Moreover, we capture which countermeasures that
have been chosen by the conductors of existing prevention techniques. The
results are presented in a matrix, and further compared and evaluated to
identified countermeasures required. These processes also take as input the
results from the final task of mapping aspects to contributors in step four.
The objectives with our classification, security model and matrix are further
explained in section 1.6. Finally, we theorize and analyze the necessity and
complicity of the proposed countermeasures in perspective of our security
model and matrix, in order to find out under which circumstances existing
prevention techniques are applicable and to what extent they can be claimed
effective.

1.5.2 Method for Data Collection

In order to survey SQL injection, we will first attempt to find all synonyms
for SQL injection and use them as search criteria. Those criteria will be used
to find any conceivable material available, published in both books and on
the Internet, including proceedings, articles, white papers, technical reports,
and other documents. The information about SQL injection in general and

9

its attack methods in particular will be complemented by security advisories,
FAQs and discussions within security communities and organizations on the
Internet. Furthermore, discussions in hacker communities on the Internet
will be considered. The process of collecting data about SQL injection will
undergo several iterations.

The information about web applications will be gathered in the same
way, though not equally extensive. We consider relational database man-
agement systems, SQL and computer security to be well researched subjects
and therefore more documented, meaning that relevant books will probably
be enough to cover them. However, where certain database specific issues
are discussed in the context of SQL injection, we will check them out. We
will search published guides for information about web application vulnera-
bilities and security issues regarding secure web application development.

1.5.3 Method Criticism

The gathered research material may not be exhaustive or even fully repre-
sentative. This originates from the fact that our search criteria may not
find all information that covers every aspect of SQL injection. Another
reason, as mentioned in section 1.7, stems from our assumption that the
available documents might not be comprehensive. However, we consider the
choice of a qualitative approach to be the main problem with our method,
since as such it may suffer from a lack of verification [20]. Definitions and
categorizations made in this thesis are based on our assumptions: assets,
threats, vulnerabilities, characteristics of attack methods and properties of
existing prevention techniques. Consequently, our results also rest on those
assumptions.

Furthermore, new attack methods and prevention techniques may be
developed and used, even in combination with existing ones, and the results
of our survey may not cope with those future challenges.

In summary, we can neither test nor try to prove our results and our
research could best serve as a more systematic approach to examining and
describing SQL injection.

1.6 Goals and Expected Results

This thesis addresses how an adequate chart over SQL injection, with a com-
parison between known prevention techniques applied in the business world
and existing theory within the field of security, can complement each other
and at the same time reveal weaknesses. One important aspect that will be
revealed is whether the existing prevention techniques can deal with SQL
injection. Another factor is whether they even aggravate the problem by in-
troducing new security flaws. We therefore set out two objectives regarding
our classification of SQL injection, security model and matrix.

10

The first objective concerns prevention techniques in general. We hope
that our security model can be used for determining the following aspects
of existing prevention techniques:

• which security services (see section 4.2 on page 35) they try to imple-
ment

• if they conform to all our defined general criteria that encompass SQL
injection attack methods

• if they prevent our identified web application vulnerabilities that SQL
injection may exploit

• if they overcome our defined threats associated with SQL injection

• if they help overcome other SQL injection-related vulnerabilities

In addition, we believe such a model to be a tool for evaluating material
on the subject of SQL injection as well as enabling support for decision-
making when evaluating web applications for SQL injection related vulner-
abilities, and guidance for developing secure web applications.

Our second objective concerns only one aspect but cover all existing
prevention techniques we identified. We assume that our matrix will:

• reveal weaknesses in existing prevention techniques against SQL injec-
tion with respect to proposed countermeasures

• give information that enables a comparison between the countermea-
sures we identified as necessary and those proposed in existing preven-
tion techniques

1.7 Related Work

Detailed guides for building secure web applications as well as documenta-
tion over common web application vulnerabilities have been developed and
made available for system architects, developers, vendors, consumers and
security professionals involved in different phases of the system develop-
ment process: design, development, deployment and testing [38, 45, 49, 50].
Particularly guides published by OWASP [49, 50] have been found relevant.

According to Kok [28] and Finnigan [14], the person with the pseudonym
“Rain Forest Puppy” was among the first to review the techniques of SQL
injection in writing. Today, extensive material on SQL injection is available
on the Internet. [2, 5, 12, 13, 14, 15, 21, 28, 32, 36, 38, 43, 44, 58, 62, 63]

SQL injection has frequently been discussed in and among various se-
curity communities, organizations, conferences, forums, hacker sites and
software manufacturers (see appendix B on page 77). We have also found

11

material written about related techniques such as cross-site scripting and
URL header manipulation as well as other features needed to take full ad-
vantage of SQL injection. Such features include poor management of gen-
erated error messages, access control structures and stored procedures in
databases. [7, 31]

Indeed, the attempts to describe and overcome the problem of SQL in-
jection are many, and they have been conducted and documented in various
forms: proceedings, articles, white papers, technical reports, advisories and
other documents. However, as pointed out in section 1.5.3, an overwhelming
part of the documents does not consist of proceedings and articles, but of
white papers, technical reports and advisories. In fact, many of the more
interesting discussions of the problem comes from advisories, error reports
from database manufacturers, and discussion forums and hacker sites on the
Internet. The sources of information available all contain inconsistencies
related to the terminology used and the scope of the problem. Moreover,
often specific database vendors, products and programming languages are
discussed, and we think that the overall picture is missed. In summary,
we believe that an attempt to fully cover the problem in a structured and
general way is needed.

Nevertheless, the material of SQL injection constitutes the information
available and will, along with the material that covers the broader aspects,
serve as basis for our research.

1.8 Artifacts

In order to achieve a better understanding of how SQL injection attacks can
be performed and in order to verify the content of the articles we read, we
have designed a simple system that allows for testing of SQL injection. The
system enables the user to log in into different system configurations that
use different web servers, script languages, application logic components and
relational databases. This allows for testing of SQL injection attack methods
and countermeasures within these configurations.

1.9 Outline

In section 2 of this thesis, we discuss common web applications including
their domain, architecture and inherent components and present our own
model of a general web application. We also describe how communication
takes place in web applications and which assets they contain.

In section 3, RDBMSs, SQL and related security issues are covered.
In section 4, we briefly cover various aspects of computer security, in-

cluding security services and mechanisms, threats, vulnerabilities, risks and
countermeasures.

12

In section 5, we will present the first part of our contribution to the
problem. We discuss and classify SQL injection, present a general security
model for SQL injection, and give attack examples.

In section 6, the second part of our contribution, we will first analyze
our security model of SQL injection. Then, we explore and analyze whether
the existing prevention techniques is adequate to cover for the threats and
vulnerabilities related to SQL injection. This is achieved both by confronting
one technique against our security model and present a matrix that displays
which countermeasures are discussed by which authors.

In section 7, we discuss implications of the analysis performed in sec-
tion 6. We attempt to make generalizations about the existing prevention
techniques against SQL injection in conjunction with security aspects within
the software development process. Moreover, we briefly discuss what we be-
lieve to be interesting directions for the continued study of SQL injection.
Finally, we summarize the findings of this study and attempt to draw con-
clusions about the existing prevention techniques against SQL injection.

13

2 Web Applications

In this section we discuss web applications, their architecture and the com-
ponents they are composed of. We also describe how communication takes
place in web applications and identify web application assets. Along the
way, we intend to give our own model of a general web application which we
will refer to throughout the rest of this thesis. This enables us to study our
problem from a general perspective, without having to consider architec-
tural or implementation specific details, i.e. number of tiers, and the choice
of components.

2.1 Domain

People that browse the web use web applications in one form or another
though, as OWASP [49] notes, the everyday web user may not be aware of
that fact because of the ubiquity of web applications:

“When one visits cnn.com and the site automatically knows you
are a US resident and serves you US news and local weather, it
is all because of a web application. When you transfer money,
search for a flight, check out arrival times or even the latest
sports scores online, you are using a web application.”

2.1.1 Web Services

Before proceeding, we think it is justified to mention a few words about
the concept of web services. As noted by OWASP [49], web services or the
similar term inter-web applications, is subject for an ongoing discussion that
treats web services as either the largest technology breakthrough since the
web itself or simply further evolved web applications. The standpoint taken
in this matter will not have an impact in this thesis but the differences and
similarities between the concepts of web services and web applications will.
The two concepts both ultimately face the same security issues and tak-
ing this under consideration, SQL injection, and therefore our results, is of
equal relevance to web services. However, due to differences in e.g. architec-
ture, languages and protocols between web services and web applications,
we prefer to leave web services outside our definition of our general web
application.

2.1.2 Business Web Applications

OWASP [49] states that any software application built on client-server tech-
nology that operates on the web and that interacts with users or other
systems using HTTP, could be classified as a web application. The client-
server architecture is discussed in section 2.2 and HTTP is discussed in
section 2.4.3.

14

Jaquith [23] and OWASP and Spett [62] note that web applications pro-
vide connectivity, access to information and online services for users. Web
applications can, according to Spett, today be implemented in various de-
grees of complexity, and each implementation has a distinct purpose: “. . . an
informational website, an e-commerce website, an extranet, an intranet, an
exchange, a search engine, a transaction engine, an e-business.” The func-
tions performed can therefore, as OWASP notes, range from relatively sim-
ple tasks like searching a local directory for a file, to highly sophisticated
applications that perform real-time sales and inventory management across
multiple vendors, including both Business to Business and Business to Con-
sumer e-commerce, flow of work and supply chain management, and legacy
applications. Corporations make use of sophisticated web applications, also
referred to as business web applications, in order to accomplish more effi-
cient information exchange within their own organizations as well as between
partners in their value chains, i.e. suppliers, distributors and customers. In
addition, web applications offer corporations management of customer rela-
tionships, new ways of doing business and creation of alliances, movement
into new markets, and promotion of their products and services. In order
to be useful and comply with their purpose, web applications require persis-
tent storage for their data. Usually, a RDBMS is chosen in order to achieve
this [12, 21, 42].

2.2 Architecture

From a hacker’s perspective, a corporation’s web application can be viewed
as a horizontal value chain of layers [62]. As we shall see in section 5,
this point of view is important to consider, when discussing the analogy of
an attack against a given web application. However, we think that in the
context of web application architecture, focusing on where different kinds of
tasks are processed is more appropriate. Therefore, an examination of the
client-server architecture is motivated.

2.2.1 Client-Server

According to Connolly et al. [10], the web itself is comprised of a network
of computers, and each computer acts in different roles: as a client, a server
or both. In order to accommodate an increasingly decentralized business
environment, web applications operating on the web use the client-server
architecture. The term client-server, as mentioned by Connolly et al., refers
to the processes with which software components interact to form a system,
i.e. client processes require resources provided by server processes. Com-
binations of the client-server architecture, or topology, include: (a) single
client, single server; (b) multiple clients, single server; (c) multiple clients,
multiple servers. The client in a web application is usually represented by a

15

web browser like Internet Explorer or Netscape Navigator. Servers typically
include web servers, e.g. Microsoft Internet Information Server, Apache and
Tomcat [6, 10, 49].

In a client-server architecture, applications can be modelled as consisting
of different logical strata. One problem is that there are different opinions
regarding about the meaning of logical strata, i.e whether to view them as
layers or tiers. We prefer the approach of dividing strata into a software
view and a hardware view. In the software view, the strata consist of layers
and in the hardware view, tiers represent the strata. [9, 10, 17, 35, 49, 59, 67]

2.2.2 The Client-Server Architecture and Layers

Before proceeding, we stress that the layers we will refer to throughout this
thesis concern responsibilities and task processing in web applications, and
not how communication in networks are organized into abstraction levels.
Therefore, we do not consider the layered approach taken in models such as
the Open Systems Interconnection (OSI) reference model to be relevant in
our discussions.

In a client-server architecture, applications can be modelled as consisting
of logical layers. While there exist different conventions for naming those
layers, we conclude that the following three different layers are included [9,
10, 17, 35, 49, 59, 67]:

Presentation The layer where information is being presented to users and
which constitutes the interaction point between users and the appli-
cation. This layer is actually constituted of two parts, where one part
is dedicated to the client-side and the other part concerns the server-
side. While this layer generates and decodes web pages, it can also
be responsible for presentation logic, meaning that components of this
layer can reside both on the client-side and server-side. Distributed
logic needed to connect to a proxy layer on the server-side along with
a proxy tier in order to make use of middle-ware, e.g. CORBA and
RMI, could also reside here.

Application logic The layer where application logic and business logic
and rules are implemented. This layer processes user input, makes de-
cisions, performs data manipulation and translation into information,
including calculations and validations, manages work flow, e.g. keep-
ing track of session data, and handles data access for the presentation
layer.

Data management The layer responsible for managing both temporary
and permanent data storage, including database operations.

16

2.2.3 The Client-Server Architecture and Tiers

We have found several different models which describe how web applications
are composed using the logical layers mentioned in section 2.2.2 [9, 10, 17,
35, 49, 59, 67]. One main characteristic shared by those models constitutes
the combination of logical layers into a 2, 3 or n-tier architecture6 in order to
provide for a separation of tasks, where a tier is defined as one of two or more
rows, levels and ranks arranged one above another. While the different tiered
approaches turn out to be irrelevant in our general model, as explained in
section 2.2.4, we think that they are worth mentioning for the sake of clarity.

Two-Tier Architecture
In the two-tier client-server architecture, mentioned by Connolly et al. [10]
as the basic model for separating tasks, clients constitute the first tier and
servers the second tier. A client is primarily responsible for presentation
services, including handling user interface actions, performing application
logic and presentation of data to the user and performing the main business
application logic. The server is primarily concerned with supplying data
services to the client. Data services provide limited business application
logic, typically validation of the client and access control to data. Typically,
the client would run on end-user desktops and interact with a centralized
DBMS over a network.

Three-Tier Architecture
In a three-tier architecture, the first tier still constitutes the client which is
now considered a thin client, i.e. is only responsible for the applications’s
user interface and possibly simple logic processing, such as input validation.
The core business logic of the application now resides in its own tier, the
middle tier, that runs on a server and is often called the application server.
The third tier constitutes an RDBMS, which stores the data required by the
middle tier, and may run on a separate server called the database server.

N-Tier Architecture
This type of architecture simply implies any number of tiers. One exam-
ple of this is when the web server and database server reside in separate
computers. Another example is when several database servers are used and
one computer is dedicated responsible of managing access to each database
server, running on separate computers. [9, 10]

6Our discussions of tiered architectures are made from the database context as ex-
plained by Connolly et al. [10].

17

2.2.4 General Web Application Architecture

We would like in this thesis to address the common characteristics of web
applications and discuss web applications from a security perspective. Ir-
respective of the differences found in implementations of web applications
discussed in section 2.1 and in the choice of tiers, web applications all con-
tain the three logical layers mentioned in section 2.2.2. Since we in this
thesis intend to center our discussions around one consistent model, we will
discard arguments for different tiered models, i.e. how layers are composed
into a number of tiers, and instead concentrate on the processes inside and
between the different layers, defined in section 2.2.2. We have also found
several reasons that support our intention.

As applications became more complex and potentially could be deployed
to hundreds or even thousands of end-users, the traditional two-tier archi-
tecture was challenged. According to Connolly et al., this mainly stems from
the fact that the client-side presented two problems that prevented true scal-
ability. First, they rely on fat clients, i.e. clients that require considerable
resources on the client’s computer to run effectively: disk space, work mem-
ory and processor power. Secondly, a significant client-side administration
overhead is required. The solution became the three tiered model, each
tier potentially running on a different platform. Hence, the arguments for
a tiered model of choice more depends on factors such as performance and
scalability rather than security.

Among others, Jaquith [23] and Spett [62] furthermore argue that ar-
chitecture issues regarding tiers and layers are less relevant when looking at
web applications from the perspective of the vulnerabilities that SQL injec-
tion exploits. Weaknesses related to security most certainly exist in system
architectures. However, web application vulnerabilities more heavily stem
from weaknesses both in practices such as application design, coding and
implementation in the development processes, as well as in the process of
system configuration. When discussing system architecture, the components
chosen for each layer are more important than how layers are combined into
tiers. Furthermore, different authors assume different tiered architectures
when discussing web applications and SQL injection. For example, Anley
has wrote two documents where he discusses a two-tier and a three-tier ar-
chitecture respectively, and argues that in order to protect web applications
from SQL injection attacks, the tiered architecture of choice is not the main
factor of concern [3, 4].

In OWASP’s guide for developing secure web applications [49], which we
think is both extensive and representative, all discussions around architec-
ture issues relating to web application security focus on layers, not tiers.

18

2.3 Components

In order to be able to define our own model of a general web application and
its inherent components, we have studied a number of existing models. [9,
10, 14, 17, 19, 35, 49, 56, 59, 67]

OWASP [49] points out that the discussion of what components a web
application actually consists of is rife with confusion. We can also conclude
that the terms found in different models have no clear definition, are used
differently by different authors, and even overlap each other. Among others,
Jaquith [23] argues that not all applications are created equally with respect
to the chosen components. Most of the components are largely interchange-
able. Development languages, web servers, application servers, middleware
and databases can all be used in secure and insecure manners. Hence, vul-
nerabilities inherent in web applications do not solely rely on the type of
components chosen. Rather, vulnerabilities stem from weaknesses in prac-
tices such as design and coding in the development process, as mentioned in
section 2.2.4.

For these reasons, we selected a collection of components from the avail-
able material that we consider representative in order to compose the general
web application we will refer to throughout this thesis. These components
were then grouped according to their logical layer membership defined in
section 2.2.2 and furthermore divided into different types. Note that the
presentation layer is divided into two layers, where one layer is dedicated
to the client-side and the other layer resides on the server-side. Moreover,
we consider some components as occurring both at the client-side and the
server-side. This stems from the fact that some components, e.g. web pages,
are stored or generated at the server-side, but they are sent to the client-
side. We think it is necessary to consider them as belonging to both sides
in the perspective of SQL injection, as we shall see in section 5.

2.3.1 Component Types

We have identified three distinct types of components that we consider mean-
ingful in order to avoid overwhelming this thesis with complexity and to
allow a discussion of SQL injection in respect of where different tasks are
processed within a web application:

Software components if they are a part of software implementation.

Data-processing components if they operate on data.

Data components if they are stored or processed data.

19

2.3.2 A General Business Web Application Model

In this section, we describe our model of a general web application7 with its
components mapped to layers. The components chosen and described are
not meant to be exhaustive. Rather, our intention is to present a foundation
for our discussions in section 5. Our model is also illustrated in figure 1.

sql queries

Data Management

Software:
- RDBMS
- Database

Data:
- Data in database

tables

Application Processing

Software:
- Application server

Data-processing:
- Programs
- Scripts

Data:
- SQL queries

result set

Presentation

Client-Side

Software:
- Web browser

Data-processing:
- Client scripts

Data:
- Web pages
- User input

request

Server-Side

Software:
- Web server

Data-processing:
- Server scripts
- Formatting

Data:
- Web pages
- Client scripts

response

Figure 1: Components within layers

Presentation layers

Software components

- A web browser, e.g. Microsoft Explorer, Netscape Naviga-
tor, Mozilla and Opera, which operates at the client-side.
A browser loads static and dynamic web pages along with
client-scripts and stylesheets from a web server, and presents
them in a graphical user interface. This component may also
constitute the point where users interact with the applica-
tion.

- A web server, e.g. iPlanet, Apache, Zeus, Microsoft IIS and
Netscape Enterprise, which operates at the server-side, re-
ceives requests from the client-side and processes them. The
server returns responses containing data components such as
static or dynamic web pages. The dynamic web pages may
be generated by the server itself or by data-processing com-
ponents.

7Unless stated otherwise, we will refer to our model of a general business web applica-
tion when we use the term web application.

20

Data-processing components

- Web browser scripts written in script languages such as Java-
Script or VBScript that constitute presentation logic on the
client-side. They extend user interactivity and perform tasks,
e.g. input validation.

- Server scripts such as Active Server Pages (ASP) or Java
Server Pages (JSP) that perform presentation logic on the
server-side and generate dynamic web pages.

- Formatting components written in stylesheet languages, in-
cluding Cascading Style Sheets (CSS) and The Extensible
Stylesheet Language Transformations (XSLT). XSLT is de-
signed for use as part of XSL, a stylesheet language for XML,
and transforms XML documents into other XML documents.

Data components

- Web pages written in e.g. HTML and the Wireless Markup
Language (WML), that are stored on the server-side, loaded
into the client-side and presented in the web browser. They
can be static, i.e. hard coded, or dynamic, i.e. generated by
server-side scripts.

- User input data that is entered in forms of web pages or the
URL header in the web browser.

- Client scripts sent to the client-side.
- Request objects sent from the client-side to the server-side

using HTTP, HTTPS or XML.
- Response objects sent from the server-side to the client-side

using HTTP, HTTPS or XML.
- Data sent between the server-side of the presentation layer

and application processing layer.

Application processing layer

Software components

- An application server that serves as a framework or develop-
ment environment for technologies that implement applica-
tion or business logic in stand-alone programs. Examples of
application servers include IBM Websphere, BEA Weblogic,
JBoss and iPlanet, Zone and Zend. Technologies include
Servlets and Enterprise Java Beans written in Java and the
Common Gateway Interface (CGI) that takes advantage of
scripts written in various languages, including C, Perl and
Python. Other examples of technologies include PHP, Vi-
sual Basic (VB) and .NET services.

21

Data-processing components

- Stand-alone programs, e.g. Servlets or Enterprise Java Beans.
- CGI scripts written in languages such as C, C++, Java or

Perl.

Data components

- Data sent between the application processing layer and the
server-side presentation layer.

Data management layer

Software components

- A RDBMS that inserts, retrieves and manipulates data in a
database through SQL queries, as well as controls access to
the database through access control mechanisms.

- A relational database that contains valuable data.

Data components

- Data in database tables.
- Data and information sent between the application process-

ing layer and data management layer, e.g. SQL queries and
result sets containing data from the database.

2.4 Communication

A typical communication exchange in a business web application, according
to Connolly et al., is initiated by users that request information. The client
takes a user’s request, checks the syntax and generates database requests in
e.g. SQL. Then, the client transmits the message to the server, waits for
a response, and formats the response for the end-user. The server accepts
and processes the database requests, then transmits the results back to the
end-user.

2.4.1 Information

Information on the web is stored in documents and the formatting language,
or system, most commonly used is the HTML. Using HTML, documents
are marked up, or tagged, to allow for publishing on the web in a platform-
independent manner. HTML documents are displayed in web browsers, that
understand and interpret HTML. [10]

2.4.2 Content

HTML documents stored in files constitute static content, i.e. the content
of the document does not change unless the file itself is changed. However,

22

documents resulting from requests such as queries to databases need to be
generated by the web servers. These documents are dynamic content and as
databases are dynamic, changing as users create, insert, update, and delete
data, the generation of dynamic web pages is a more appropriate approach
than static content, particularly in web applications. [10]

2.4.3 Protocol

The exchange of information in web applications is mainly governed by
protocols such as HTTP or HTTPS, which define how clients, i.e. web
browsers, and servers, i.e. web servers, communicate. HTTP relies on
a request-response paradigm and a transaction consists of the following
stages [10, 19, 49]:

Connection The client establishes a connection with the web server.

Request The client sends a request message to the web server

Response The web server sends a response, i.e. a HTML document, back
to the client.

Close The connection is closed by the web server.

Basically, a request in a HTTP connection constitutes an object con-
taining, e.g. a requested resource. Consequently, a response is the result
to be presented in the web browser. When a user visits a page, web pages,
client-side scripts and formatting components are sent back to the client for
rendering and presentation. In the case a user requests data contained in
a relational database, user input parameters are typically embedded in the
request. Those parameters can be included as arguments to methods in ap-
plication processing components that dynamically build SQL queries. They
may also indicate which SQL query is to be executed, in case that static SQL
is used, e.g. stored procedures or prepared statements (see section 3.3.2).
The response object will contain data for presentation in the web browser.
That data may have been parsed and prepared by either application process-
ing components, server-side scripts or both for rendering purposes: either
for tailoring the graphical design or ease the rendering process in the web
browser.

HTTP brings up several security weaknesses. A HTTP request is com-
posed of different parts and attackers can manipulate those parts in order to
try to bypass security mechanisms. The web server listens on an open port
for incoming requests from clients. For general web traffic, i.e. HTTP, port
80 is often used as the default port and for encrypted traffic, i.e HTTPS,
port 443 is normally chosen. However, each web server requires a unique
port to listen to and since corporations can have several web servers, the

23

port of each server has to be configured. Moreover, application servers re-
quire open ports as well. While this means that an attacker can not always
assume that the web server of choice listens to port 80, the important is-
sue is that there exists an open port through security mechanisms such as
firewalls into a corporations web server. [62]

2.4.4 URL Encoding

According to OWASP [49], a server can receive input from a client in two
basic ways: either data is passed in HTTP headers or it can be included
in the query portion of the requested Uniform Resource Locator (URL),
which uniquely defines where resources can be found on the Internet. Both
methods correspond to two methods used when including input in client
requests: GET and POST. Manipulation of a URL or a form is simply two
sides of the same issue.

However, when data is included in a URL, it must be specially encoded
to conform to proper URL syntax. Unfortunately, as OWASP notes, the
URL encoding mechanism allows virtually any data to be passed from a
client to the server. Proper precautions must be taken by the application
logic, as discussed in section 5 when accepting URL encoded data since this
mechanism can be used for disguising malicious code.

2.5 Assets

The task of defining web application assets is not entirely simple. Various
types of implementations exist and they all have a distinct purpose. While
applications may conform to the same type of implementation, e.g. an
intranet, each corporation may view their assets differently. We consider
that to be one explanation why defining a set of assets suited for our model
was not a clear case.

Some authors, including Connolly et al. [10] generalize computer system
assets into distinct categories. Others give concrete examples, rather than
definitions, of assets that mainly concern information contained in web ap-
plications [12, 21, 42]. Since we consider web applications to be, or at least
be part of, computer systems our list of assets contain compiled generaliza-
tions and further complemented with more specific examples that conform
to our definition of a business web application.

We conclude that assets can either be tangible or intangible. The list
below constitutes tangible assets:

Hardware Network infrastructure components such as routers, hubs, swit-
ches, gateways and cables that connect these devices. Hardware also
includes computers running server and client software, and compo-
nents inherent in computers, e.g. hard drives. Network printers and
scanners are other examples of hardware.

24

Software Any software or data-processing component defined in section
2.3.2.

Data Data components defined in section 2.3.2. Data stored in relational
databases include configuration data, database tables mentioned in
section 3.1 and data contained in those tables, e.g. user credentials,
sensitive financial information, preferences, invoices, payments, and
inventory data.

Intangible assets are less obvious and more difficult to define, rank and
evaluate. Connolly et al. give organization credibility and customer confi-
dence as examples of intangible assets.

Tangible assets seem to be most frequently discussed. One reason for this
might be that, from a computer security perspective, security measures for
intangible assets can be more difficult to depict. The effects of an unavailable
web server or loss of data in a corporate database will probably be noted
quickly whereas customer dissatisfaction may take longer to be revealed.
Nevertheless, intangible assets such as customer confidence ultimately can be
transformed into tangible assets, e.g. clients. If organizations begin to lose
clients or face difficulties in acquiring new ones, they begin to lose money.
Therefore, as we also shall see in section 5, we think that excluding intangible
assets will be a mistake that seriously affect an organizations efforts spent on
securing web applications, irrespective whether the organization is a software
developer, contractor or buyer.

25

3 RDBMS and SQL

In this section we give an introduction to Relational Database Management
Systems (RDBMS) and the Structured Query Language (SQL), its syntax
and usage. We do not intend to a give a complete review of these subjects,
as we consider this to be outside this thesis’ boundaries. This section relays
heavily on the book written by Connolly et al. [10] and its comprehensive
explanation of SQL.

3.1 RDBMS

Connolly et al. [10] defines a database as “A shared collection of logically
related data (and a description of this data), designed to meet the informa-
tion needs of an organization.” The database is a shared resource of data
which is used by organizations and is among the most crucial components in
web applications [21, 42]. A database management system, DBMS, is used
to allow user interaction with the database. Such DBMSs are defined by
Connolly et al. as “A software system that enables users to define, create,
and maintain the database and provide controlled access to this database.”

According to Gollman [18], the most widely used database model in
databases today is the relational model, which is used to organize relational
databases. A DBMS which relies on the relational model (an RDBMS) is a
system through which users can administrate a database which is perceived
as a collection of tables. These tables (or relations) are organized as a two
dimensional array containing rows and columns. A table’s rows (or tuples)
are the elements of the table, and its columns (or attributes) are the names
of data that is represented.

As Connolly et al. state, the Structured Query Language (SQL) has
become the standard language used in relational databases and is the only
database language to gain wide acceptance. This language allows users to
administrate databases using an RDBMS as well as communicating with
them.

3.2 SQL

The SQL standard, according to Connolly et al. [10], was defined by the
American National Standards Institute (ANSI) and was later adopted by
the International Standards Organization (ISO). Its objectives are to allow
users to create database and relation structures, managing tables by insert-
ing, modifying, and deleting data as well as retrieve information from the
database through queries. SQL queries are commands that are passed to the
RDBMS, and specify which data is to be gathered from one or more tables
and how it should be arranged. We intend to follow the ISO SQL standard

26

used by Connolly et al.8, and will be using it throughout this thesis unless
stated otherwise.

SQL consists of two major components: the Data Manipulation Lan-
guage (DML) and the Data Definition Language (DDL). Using the DML,
users can manipulate data stored inside tables in the database, while the
DDL allows creating and destroying database objects such as schemas, do-
mains, tables, views and indices.

3.2.1 DML

The Data Manipulation Language has four available statements, namely
SELECT, INSERT, UPDATE and DELETE. We describe each of these
statements according to Connolly et al. [10] using the syntax described in
table 1.

Symbol Represents
SELECT, INSERT, . . . reserved words
table name, column list, . . . user-defined words
| choice among alternatives
{} required element, for example {a}
[] optional element, for example [a]
. . . optional repetition (zero or more times)

Table 1: SQL syntax

SELECT used for retrieving information from one or more tables in the
database and displaying it.

The syntax of the SELECT statement is given below:

SELECT [DISTINCT|ALL]
{*|column_expression[AS new_name]][,...]}

FROM table_name [alias][,...]
[WHERE condition]
[GROUP BY column_list][HAVING condition]
[ORDER BY column_list]

where column expression represents a column name or expression, new-
name is a new temporary name to use for the column expression, ta-
ble name represents the name of the database table or view table to select
from, alias represents an optional name for the table name, condition is
the condition upon which selection is made or a condition for display (see
HAVING), and column list represents the list of table columns to group
or order the result upon.

8ISO 9075:1992(E)

27

The sequence of the SELECT statement processing, and the meaning of
the reserved words are:

FROM specifies which tables to choose from
WHERE filters the selected data rows due to a condition
GROUP BY groups together rows with same column value
HAVING filters the selected groups due to a condition
SELECT specifies which column should appear in the result
ORDER BY specifies the order to sort the output upon

INSERT used for adding new data rows in a table.

The syntax of the INSERT statement is given below:

INSERT INTO table_name[(column_list)]
VALUES(data_value_list)

where table name represents the name of the database table or view table,
column list represents the list of table columns to update, and data value-
list represents the list of values to enter into each column in the new row.

The number, position, and type of data values must correspond to the table’s
column list.

UPDATE used for modifying data rows in a table.

The syntax of the UPDATE statement is given below:

UPDATE table_name
SET column_name1 = data_value1
[, column_name2 = data_value2...]
[WHERE search_condition]

where table name represents the name of the database table or view table,
column name represents the column name to modify, and data value
represents the new value to enter into the column. The new given value
must correspond to the table’s column. The WHERE clause specifies which
row is to be modified, according to the search condition. If omitted, the
whole table will be affected.

DELETE used for removing data rows from a table.

The syntax of the DELETE statement is given below:

DELETE FROM table_name
[WHERE search_condition]

28

where table name represents the name of the database table or view table,
and the WHERE clause specifies which row is to be modified, according to
the search condition. If omitted, all data in the table will be deleted.

SELECT statements can be used to retrieve data in many different ways.
In order to explain this, we give here a list of different query formulations
and the way they are commonly used according to Connolly et al.

• Simple Queries can be used to retrieve either all or a selection of
columns and rows from one or more tables. A condition can also be
specified to minimize the selection.

• Sorting Results can be achieved by using the ORDER BY clause.

• Aggregate Functions are used to retrieve numeric information about
the data. The clauses COUNT, SUM, AVG, MIN and MAX are used
to retrieve number of rows, sum of values, values average, minimum
value and maximum value, respectively.

• Grouping Results can be achieved using the GROUP BY clause.

• Sub queries can help creating complex queries wherein result from a
secondary query can used for instance as a condition for the primary
query.

• The ANY and ALL Clauses can be used to compare results of a
primary query with all or any of the results of a secondary query.

• Multi-Table Queries are used to combine columns from different
tables through usage of different JOIN clauses.

• The EXISTS and NOT EXISTS Clauses can be used to check if
a value exists or not in a table or in a result from a secondary query.

• Combining Result Tables can be made using the UNION, INTER-
SECT and EXCEPT clauses.

3.2.2 DDL

Connolly et al. [10] defines the Data Definition Language (DDL) as “A de-
scriptive language that allows the DBA or user to describe and name the
entities required for the application and the relationships that may exist be-
tween the different entities.” Thus, the DDL is used when manipulating the
database’s meta-data, which describes the objects contained in the database
and allows access to them. The DDL does not allow users to manipulate
data stored in the database.

29

3.3 Query Techniques

An SQL query to be executed in a RDBMS can be constructed using two
techniques. Either the query is allowed to be dynamically tailored with
respect of both SQL keywords and query arguments, or the query syntax is
unchangeable, only allowing arguments to be passed [10].

3.3.1 Dynamic SQL

Dynamic SQL refers to the concept of allowing an SQL query to be dynam-
ically built by concatenating statements and using variables that supply the
query with dynamic values. According to Connolly et al. [10] and Harper [21]
and Khatri [25], the query is typically stored in a variable and the query
builders consist of application logic components that adds SQL syntax and
arguments to the variable in a process governed by specified conditions. Such
queries are interpreted and compiled at run-time by the RDBMS, meaning
that the query will be compiled every time it is executed. Since dynamic
SQL allows SQL syntax to be added, both SQL keywords and values may be
passed as arguments to queries. This may cause unexpected results, further
discussed in section 5.

3.3.2 Static SQL

Static SQL refers to the concept of using fixed and unchangeable SQL
queries. Such queries are predefined and compiled and are not permitted
to add SQL keywords, defined in DDL or DML. Only arguments to clauses,
e.g. WHERE, may be allowed to be passed to the queries. Either the query
is embedded in application logic code in form of prepared statements or it
resides in RDBMS as stored procedures.

Stored procedures are pre-compiled collections of SQL statements, or
sub-routines, that reside in the RDBMS. Either they are supplied by the
database vendor, i.e. system stored procedures, or additionally constructed
by system developers, database administrators or application programmers.
They allow a developer to access and manipulate databases quickly and
efficiently. Since they are compiled in advance, they possess the property
of being executed faster than dynamic SQL. Another property is that once
created, stored procedures cannot be modified via dynamic SQL. Stored pro-
cedures are executed by invoking a command that includes the procedure
identifier. This can be done either from a command prompt or from ap-
plication programs written in languages such as C or Visual Basic. Several
RDBMS supports this feature, but the set of stored procedures that follow
with the installation and the syntax for invoking them varies. [10, 13, 21, 25]

30

3.4 Error Messages

RDBMSs have in-built error handling mechanisms that may generate error
messages when for example an SQL query could not be executed. The
error message format used and degree of details embedded in generated
messages vary from RDBMS to RDBMS. Nevertheless, if you run a query
and accidentally make a mistake by entering e.g. a table that does not
exist in the database, the RDBMS may return an error message containing
information about the error. Some RDBMSs even react to all errors in
the same manner, whether those errors are generated by users, databases,
objects, or the system. [31, 61, 63]

Error messages are typically propagated back to the source that caused
the error. The web server or application server will propagate an error page
that displays the message to the client. Web application developers can take
advantage of these messages for debugging purposes, as noted by Spett [63].
However, as we shall see in section 5, it is not a wise error-handling approach
to let web servers display these error messages in error pages to users of web
applications.

3.5 Security

Database security, according to Connolly et al. [10], concerns “The pro-
tection of the database against intentional or unintentional threats using
computer-based or non-computer-based controls.” Besides the effect that
poor database security can have on the database, it may also threaten other
parts of a system and thus an entire organization. The risks related to
database security are:

• Theft and fraud which are activities made intentionally by people.
This risk may result in loss of confidentiality or privacy.

• Loss of confidentiality which refers to loss of organizational secrets.

• Loss of privacy which refers to exposure of personal information.

• Loss of integrity which refers to invalid or corrupt data.

• Loss of availability which means that data or system cannot be
reached.

Threats that correspond to those risks are such situations or events in
which it is likely that an action, event or person will harm an organization.
Threats can be tangible, that is, cause loss of hardware or software, or
intangible, as in with loss of credibility or confidence. In order to be able
to face threats, a risk analysis should be conducted, in which a group of
people in an organization tries to identify and gather information about the

31

organization’s assets, the risks and threats that may harm the organization
and the countermeasures that can be used to face those risks. Decisions
made using such risk analysis are thereafter used to implement security
measures in the system. These security measures can be computer-based
controls or non-computer-based controls.

3.5.1 Computer-Based Controls

According to Connolly et al. [10], computer-based controls are used for pro-
tecting DBMS through means of authorization, views, backup and recovery,
integrity, encryption and associated procedures.

Authorization
Authorization is used to define which activities (or privileges) are granted
to different users (or subjects), which allows them to manipulate or retrieve
information from different database objects. In order to ensure that the
user is who she claims, authentication is used. Usually, a simple mechanism
of usernames and passwords is used, whether in the DBMS or in combina-
tion with the operating system where the DBMS resides. A user is asked
to fill her name and password, and the authentication mechanism confirms
that the user is who she claims to be by comparing the password with the
corresponding password in a list it maintains.

The DBMS usually maintains a list of privileges that subjects have on
certain database objects. A DBMS that operates as a closed system, main-
tains a privileges list in which users are not allowed to operate on any objects
except the ones in the list. A DBMS that operates as an open system, on
the other hand, allows users to operate on all objects except those that are
explicitly removed and listed in the privileges list.

Privileges may also be group-based or role-based. Both users and objects
may be joined in a group and privileges may be given to a group of users or
objects. Certain roles can also be given privileges on objects, and a number
of different users may undertake a certain role.

Views
Views are virtual tables that are created through some operations on data-
base objects. By removing certain columns or rows and combining certain
tables, such views can be used to limit the scope of objects that users can
manipulate or retrieve information from.

Backup and Recovery
In order to be able to recover from a failure, a DBMS must regularly make
a copy of the database and log files. Log files are a list of activities made
in the database that can be used to recover the database after a failure.
Checkpoints made in certain time intervals can assure that the backup and

32

log files are synchronized. This allows for safe recovery since operations that
are listed in the log file need only be carried out from the point in time when
the last backup was made.

Integrity
Integrity controls can be used to see to that data in database does not get
corrupt. Such controls are called relational integrity controls, and are rules
that some databases implement internally to maintain data validity. Other
database do not implement those controls and it is up to the application
programmer that uses the database to see to that data validity is being
maintained.

Encryption
Encryption is a method that is used for encoding the data so that other pro-
grams cannot read it. Some DBMSs contain an internal encryption mecha-
nism, while other relays on the operating system or third-party programs.

Associated Procedures
Connolley et al. describe some associated procedures that should be used
to further protect the database:

• Authorization and authentication: in order for these mechanisms
to work properly, a password policy should be maintained, which reg-
ulates matters like minimum passwords length, how often they should
be replaced, as well as revoking old passwords.

• Backup: procedures should regulate how often backups should be
made as well as what parts of the database backups should include.
Furthermore, backups should be kept in a safe place.

• Recovery: recovery mechanisms should regulate how backups and
logs can be used in case of failure. These procedures should also be
tested regularly.

• Audit: audits should be carried out regularly to control the security
and to see to that all mechanisms are adequately functioning.

• Installation of new software: before any new software is to be
installed, it should be properly tested so that it would not harm any
data or mechanisms.

• Installation/upgrading of system software: any system upgrades
should by documented and reviewed. Before such upgrades take place,
the risks of such an act should be considered and plans should be made
for possible failures and changes.

33

3.5.2 Non-Computer-Based Controls

The most important countermeasure among non-computer-based controls
is the security policy and the contingency plan. A security policy concerns
security maintenance in an organization, and contains “. . . a set of rules that
state which actions are permitted and which actions are prohibited.” [18]
A contingency plan is a detailed description of the actions that should be
taken in order to deal with unusual events, such as sabotage, fire or flood.

34

4 Computer Security

In this chapter, we define and discuss various components of computer secu-
rity. Furthermore, we try to give a comprehensive image of what computer
security is and which role it has in organizations.

4.1 Assets

The goal of security, according to Gollmann [18], is to protect an organiza-
tion’s assets, meaning to prevent assets from being damaged, detect when
such damage occurs, and then react in order recover the assets.

4.2 Services

Computer security, according to Gollmann [18] “. . . deals with the prevention
and detection of unauthorized actions by users of a computer system.” A
few aspects of the above mentioned assets must be protected in order to
maintain computer security. Gollmann mentions that three aspects are most
frequently proposed, namely confidentiality, integrity and availability. Other
aspects that are worth mentioning, according to Gollmann, are authenticity
and accountability. Below we list Gollmann’s definitions to these aspects:

Confidentiality prevention of unauthorized disclosure of information

Integrity prevention of unauthorized modification of information

Availability prevention of unauthorized withholding of information or re-
sources

Authenticity verification of claimed identity

Accountability ability to trace responsible party for information audition

Stallings [64] calls these aspects security services, and points out that
“A service [. . .] enhances the security of the data processing systems and
the information transfers of an organization”. Stallings adds two services to
the above list:

Nonrepudiation as a corollary of accountability, an object cannot deny
its part in an event

Access Control limitation and control of the access to host systems and
applications via communication links

These services, according to Stallings, attempt to resist security threats,
using one or more security mechanisms.

35

4.3 Threats

Connolly et al. [10] defines threats as any event that could adversely affect
a system, and consequently an organization. This affect can harm a sys-
tem in various ways, and can be caused by person or an action, whether
intentionally or unintentionally. In this thesis we intend to concentrate our
discussion about intentional threats, or security attacks, as Stallings [64]
refers to them. These threats can be grouped by the security service that
they threat:

• Interruption: an attempt to destroy an asset or make it unusable,
i.e. a threat to availability

• Interception: an attempt to gain access to an asset, i.e. a threat to
confidentiality

• Modification: an attempt to tamper with an asset, i.e. a threat to
integrity

• Fabrication: an attempt to create objects in the system, i.e. a threat
to authenticity

Furthermore, Stallings suggests that attacks (which are source to threats)
can be divided into two categories: passive attacks, in which the attacker
is trying to eavesdrop or monitor information, and active attacks, which
involves modification or fabrication of data.

4.4 Mechanisms

Stallings [64] defines security mechanisms as any “. . .mechanism that is
designed to detect, prevent, or recover from a security attack.” These mech-
anisms are thus used to implement the security services and maintain their
specific security aspect. Examples of different mechanisms are given below:

• detection: intrusion detection mechanisms continuously monitor the
system, perform event logging and alert administrators of detected
attacks.

• prevention: firewalls prevent unauthorized information traffic to pass
into or out from internal networks.

• recovering: logs and backups enable a system to recover after system
failure or successful attacks, which might have damaged parts of the
system.

36

4.5 Vulnerabilities

Anderson [1] and Stallings [64] refer to vulnerabilities as breeches in security
mechanisms that can be used to preform attacks and thus constitute a threat
to a computer system. Examples of vulnerabilities are given below:

• lack of implemented security mechanisms, e.g. ignoring the virus
threat by not installing anti-virus programs.

• deficient configuration of security mechanisms, e.g. configuring fire-
walls to allow any kind of traffic between networks.

• inadequate updating routines of security mechanisms, e.g. not in-
stalling patches and new virus definitions for anti-virus programs.

4.6 Relation Between Security Components

In order to summarize this discussion we present the security components
discussed above and the relations between them in figure 2.

Assets
specifies security aspects for

implement

Mechanisms Threats
prevent

Vulnerabilities
exploitcompromise

endanger

Services

Figure 2: Relation between security components

37

5 SQL Injection

This section constitutes the first part of our attempt to contribute to the
SQL injection problem. The area of SQL injection, including definitions,
context of operations, conditions, vulnerabilities, attack methods, and ex-
isting prevention techniques will be explained and classified. Furthermore,
we present a model to be used as a base for discussion when evaluating ex-
isting prevention techniques against SQL injection. Finally, we give some
attack examples.

5.1 Introduction

5.1.1 Scope

We will view SQL injection as the majority of the authors do: a tech-
nique used for manipulating server-side scripts that send SQL queries to an
RDBMS. This is done by manipulating client-side data, including changing
SQL values and concatenations of SQL statements, which are sent to a web
server embedded in HTTP requests. Once the web server receives a request,
it forwards the information in it to a script which uses that information to
build SQL queries. The goal of the attacker who uses SQL injection is to
manipulate with the SQL query used by the script so that it would yield
unwanted results, such as fetching, inserting, manipulating or deleting pro-
tected rows or tables in the database. [2, 5, 8, 12, 13, 14, 15, 21, 24, 27, 28,
38, 43, 52, 62, 63].

Before proceeding, we think that a discussion of the scope of SQL injec-
tion is necessary. Attack methods of SQL injection have by some authors
been classified into direct and indirect attacks.

Using direct attacks, an attacker tries to take control of an RDBMS. The
purpose of such attacks is to further take control of other host computers and
compromise a network. First, attackers scan for open ports that database
servers are listening to. If such ports are found, they continue with executing
system commands through a command console, communicating with the
RDBMS directly. [3, 4, 28, 37, 44, 53]

Indirect attacks, on the other hand, are performed through web applica-
tions. True, it is possible to execute commands by embedding calls to stored
procedures in dynamic SQL and that may cause devastating results if suc-
cessful [2, 3, 13, 14, 37, 53, 63]. However, the main purpose is to directly
attack the RDBMS in general and its stored data in particular [2, 5, 8, 12,
13, 14, 15, 21, 24, 27, 28, 32, 36, 38, 39, 42, 43, 52, 55, 60, 62, 63, 65].

A majority of the authors do not mention or discuss direct attacks. This
may stem from the fact that they either are not aware of such flaws or that
they do not consider them as falling into the scope of SQL injection. Re-
gardless of the reason, direct attacks are conducted through the RDBMS
and aims at the network infrastructure. When discussing direct attacks,

38

authors refer to direct communication with the RDBMS and not attacks on
the RDBMS itself. It seems to be true that attackers can take advantage
of some aspects of SQL injection when performing such attacks. However,
we consider the concept of direct attacks to be somewhat misleading since
it does not relate to web applications. Furthermore, from a security per-
spective, we think that direct attacks relate to network security rather than
application security. Flaws like open ports that allow attackers to commu-
nicate with the RDBMS using arbitrary protocols from command consoles
can be prevented by existing network security countermeasures as well as
database security configuration, e.g securing the system administrator ac-
count. Therefore, we consider direct attacks to be outside the scope of this
thesis.

5.1.2 Basics

As noted by Spett [63], a web application can, from a hackers perspective, be
viewed as consisting of the following layers: desktop layer, transport layer,
access layer, network layer and application layer. At the desktop layer, com-
puters with web browsers acting as clients are used for accessing a system.
The transport layer represents the web, and the access layer constitutes the
entrance point into a corporation’s internal system from the web. The net-
work layer consists of the corporation’s internal network infrastructure and
finally, the application layer includes web servers, application servers, appli-
cation logic and data storage. Every layer may have its own implemented
countermeasures in order to detect, prevent and recover from attacks, as
shown in figure 3.

Intrusion
Detection

Application
Protection

Access ControlEncryptionAnti-Virus

Desktop
Layer

Transport
Layer

Access
Layer

Network
Layer

Application
Layer

WWW

Firewall

Fddfgfhdfhdfhd dfhdfh dfh
dfhdfh df hd fh df hd fh df
hd fh d fh dfh d fh dfh d
fhdfhdhf dfhdfhdfh dfhdfhd
fhdfhd

Dfh dfhdfh
Dfhdfh dfhdfhdfhdhf

Sdg sdg s
Sd sdg sdgg
Sdg sdg
Dfh dfh dfhdfh

ScriptsNetworkDesktop Internet

Figure 3: Security layers in web applications [62]

Unfortunately, SQL injection attacks can only be prevented in appli-
cation logic components such as scripts and programs in the application
layer. No matter how many resources and how much effort a corporation
spends in the other layers, if application security has not been properly

39

applied in the application layer, their web applications may contain vul-
nerabilities that SQL injection attackers can exploit [29, 49, 62]. We do
not say that countermeasures like encryption, firewalls, intrusion detection
and database security are not important. They are effective when dealing
with other types of attacks. However, they have been shown insufficient
and ineffective regarding SQL injection and therefore we will not consider
them [16, 18, 29, 22, 43, 51, 58, 62]. Encryption for example, only pro-
tects stored data or data during transport in and between lower layers. In
the context of web applications, user input may be encrypted between the
client-side and server-side. Furthermore, SQL queries may be encrypted
during transport between components such as scripts and programs on the
server-side. But in order for the server-side to construct SQL queries and
for RDBMS to execute them, they must first be decrypted. The data may
still be encrypted but the SQL queries could have been manipulated through
SQL injection.

Basically, most web servers are protected by firewalls. However, from a
security perspective, web applications offer users legitimate channels through
firewalls into corporations systems. The reason for this is that when clients
request services from servers on the web, the underlying communication
takes place through HTTP, and web applications are no exceptions. HTTP
is firewall-friendly, i.e. it is one of the few protocols most firewalls allow
through. This stems from the fact that HTTP requests are considered legal,
since traffic between clients and servers must be allowed in order for the web
applications to be of any use. SQL injection takes advantage of this prop-
erty by embedding attacks in HTTP requests. These attacks are therefore
carried out behind firewalls through the application layer [23, 53, 49, 50, 62].
Therefore, SQL injection requires neither specialized tools nor extensive ex-
perience and knowledge. A web browser is sufficient in order to perform
SQL injection attacks against web applications, as long as the attacker has
basic knowledge of HTTP, relational databases and SQL [12]. Even if the
RDBMS is secured through proper configuration, the database can still be
vulnerable for SQL injection attacks. In RDBMS, SQL queries are executed
as long as they are valid and well-formed and users have the required privi-
leges. Therefore, while security flaws are often to be found in the RDBMS
due to improper security configuration, Andrews [2] and Peikari and Fo-
gie [44] and Liu [33] conclude that one must instead consider that database
security as a single measure is not sufficient to guarantee protection of data
in web applications.

5.1.3 Attack Procedure

We have found that attackers in general follow a procedure consisting of
a series of steps. Our compiled procedure represent the set of all steps
identified with respect to all available attack methods, further discussed in

40

section 5.2.3. Attackers may combine methods in the attack in order to
fulfill their objectives, but the process is executed for each attack method
in an iterative manner. Depending on the attack method used, some steps
may be ignored.

Setting the objective: Whether explicit or arbitrary, attackers has one
or more objectives for conducting SQL injection attacks. These ob-
jectives relate to security services as shown in figure 2 on page 37.
A concrete example might be that an attacker wants to access the
web application in order to obtain information about a corporation’s
customers. This is an attack on the security service confidentiality.

Choosing the method: In some cases, the attacker is only interested in
gaining access to the web application and therefore tries to bypass
authentication. In other cases, bypassing authentication is only one
step before he can try to reach his objectives. Hence, several methods
can be chosen.

Examining prerequisites: In order to determine if the objectives can be
reached, the attacker systematically checks which prerequisites is sup-
ported. Prerequisites may be necessary conditions for a given attack
method, or make the attack easier to conduct.

Testing for vulnerabilities: The attacker begins testing for vulnerabili-
ties to exploit, e.g. experimenting with input validation by entering
single quotes, enumerating privileges or evaluating returned informa-
tion.

Choosing means: Depending on supported prerequisites and found vul-
nerabilities, the attacker chooses his means for the attack.

Designing the query: The query designed by the attacker needs to follow
the proper structure of an SQL query expected by the RDBMS. If not,
syntax errors are generated and displayed in error messages. One ex-
ample of syntax errors relates to quotation marks, i.e. if SQL injection
is possible without escaping them. Another example is if parenthesis
are used in the underlying query. Depending on the objective, other
syntax errors that concern information retrieval of database structure
may have to be overridden. Examples of such errors include table
names, column names, number of columns and data types.

5.2 Nomenclature

This section presents our classification of the area of SQL injection in terms
of general criteria. Surveying SQL injection from a general perspective
allows us to discuss the problem irrespectively of factors such as which

41

RDBMS or application logic components chosen. Therefore, we choose to
divide SQL injection issues into broad groups of interest, where every group
represent some aspect of the area and contain a set of related items to con-
sider. The order of the items in each group is arbitrary and we do not
attempt to rank them.

We have listed which authors that discuss which items within some
groups. This enables us to evaluate whether our two main objectives, stated
in section 1.6 on page 10, have been reached. Furthermore, we can test
whether our hypothesis, also stated in section 1.6 on page 10 is true: do
existing prevention techniques contain weaknesses and therefore can not ef-
fectively cope with SQL injection?

While our classification can be used as a consistent terminology when
discussing SQL injection, we also use it as general criteria for the construc-
tion of our security model, presented in section 5.3.

5.2.1 Security Services

The objectives of SQL injection attacks can be expressed in terms of com-
promising security services discussed in section 4.2 on page 35. We consider
the security services below relevant to maintain asset security in respect
to SQL injection. We have taken the liberty of altering their definitions
slightly:

s1. Access control: Access control involves ensuring that users can only
access and manipulate data according to their privileges.

s2. Availability: The services offered by a web application must be avail-
able to users when they request them.

s3. Authenticity: Ensuring that users who log in to a web application are
who they claim to be.

s4. Confidentiality: Ensuring that information is kept secretly. This se-
curity service can be divided into privacy and secrecy.

s4.1. Privacy: Personal information, concerning employees and customers
must be kept secret.

s4.2. Secrecy: Sensitive business-related information must be kept secret.

s5. Integrity: Information consistency must be maintained.

42

5.2.2 Means

Attackers can use different means to perform an attack:

m1. Web page form manipulation: An attacker can use forms to enter
parts of SQL statements such as SQL keywords, control characters or
data in order to manipulate underlying application server-side scripts
or programs.

m2. URL header manipulation: In a similar way as m1, parts of SQL
queries can be entered into a page’s URL, sending manipulated argu-
ments to the server-side.

m3. Cross-site scripting: By viewing the source code of web pages and
examining existing client-side scripts, an attacker can write a fabri-
cated script and use it to send information to the underlying server-
side scripts and programs instead of using the original script [62].

m4. Error message interpretation: By examining error messages gen-
erated by either the RDBMS or server-side scripts, an attacker can
retrieve information about the database structure: table and column
names, number of columns and column data types. Furthermore, error
messages can contain information about SQL query syntax and how
scripts are formed.

5.2.3 Attack Methods

References made in this section refer to which authors that explicitly men-
tion them as attack methods.

There are numerous ways to conduct SQL injection attacks, and the
chosen methods depend on what the attacker will accomplish, i.e. which
security services to endanger, and what vulnerabilities the web application
contains. These methods constitute threats, as discussed in section 4.3 on
page 4.3 and they can be grouped into two main categories:

a1. Data manipulation: Using data manipulation, an attacker can by-
pass authentication as well as retrieve, change, fabricate or delete data
in a database.

a2. Command execution: Command execution is a method that enables
an attacker to execute SQL specific system commands through the
RDBMS and may even allow the attacker to take control over other
host computers in the network. This method also takes advantage of
static SQL from within dynamic SQL, i.e. tampering with and ter-
minating an existing SQL query and adding a new statement that
calls a stored procedure. In case the attacker is calling system pro-
cedures that come with the RDBMS, he may for example copy and

43

email database tables to a foreign account. The other approach is to
try to call stored procedures that have been tailored by system de-
velopers, database administrators or application programmers for the
web application. [2, 3, 4, 5, 8, 13, 14, 21, 37, 44, 53, 55, 63, 65].

Category a1 can further be roughly divided into distinct methods:

a1.1. Authentication bypass: An attacker may use this method to pre-
tend to be a legitimate user [3, 5, 14, 21, 24, 27, 28, 31, 32, 34, 36, 37,
39, 42, 44, 43, 53, 55, 63, 65].

a1.2. Information retrieval: Attackers can try to manipulate or execute
SELECT statements in order to get access to information beyond their
privileges. This could be achieved by e.g. manipulating the WHERE
clause. One example of this is that more rows than intended can
be retrieved from the table specified in the original query using the
example given in section 5.4. Another example is by using UNION,
causing rows from more tables to be returned than specified in the
original query [4, 5, 8, 12, 13, 14, 21, 28, 31, 34, 42, 43, 44, 55, 60, 63].

a1.3. Information manipulation: Attackers can try to manipulate or
execute UPDATE statements in order to alter information beyond
their privileges [3, 12, 28, 31, 44, 60].

a1.4. Information fabrication: Attackers can try to manipulate or ex-
ecute INSERT statements in order to alter information beyond their
privileges. [8, 28, 31, 36, 37, 60, 63]

a1.5. Information deletion: Attackers can try to manipulate or execute
DELETE or DROP statements in order to alter information beyond
their privileges [3, 5, 13, 27, 36, 43, 44, 60].

Few authors mention or discuss methods a1.3 through a1.5 and among those
not referred to in the list above, few supply concrete examples. Rather, these
methods are implicitly included in authors documentation. We think that
one reason for this might be that their papers and reports are not intended
to fully cover all available methods. Nevertheless, our test system mentioned
in section 1.8, has proven that the methods a1.3 through a1.5 are valid SQL
injection attack methods.

We point out that all means, discussed in section 5.2.2, can be used by
methods falling into both category a1 and a2.

5.2.4 Prerequisites

We have found that different SQL injection attack methods need different
prerequisites in order to be carried out. These prerequisites are related to
both query execution properties and other features that RDBMS support as

44

well as properties of programming languages used for implementing scripts
and programs. What is important here is not which properties are offered by
which RDBMS and programming languages. Rather, the question concerns
which properties are supported by the RDBMS and programming languages
chosen in a given web application. These prerequisites are not necessary to
conduct SQL injection attacks. Rather, they should be viewed as compo-
nents that make attacks easier to conduct. For example, prerequisite p4
may enable an attacker to add an INSERT query after an intended SE-
LECT query. However, the attacker could also try to find a field in a form
where an INSERT query is expected.

References made in this section refer to which authors that explicitly
mention them as prerequisites.

p1. Sub-selects: Sub-selects are multiple SELECT statements used to-
gether. A top-level SELECT statement is using other lower-level state-
ments to retrieve values to be used in a WHERE clause [14, 63].

p2. JOIN clause: JOIN clause can be used when multiple SELECT que-
ries are combined in the same query.

p3. UNION clause: UNION clause can be used when multiple SELECT
queries are combined in the same query [3, 14, 28, 31, 36, 37, 42, 63, 65].

p4. Multiple statements: Refers to the ability to allow execution of mul-
tiple SQL statements, where each statement is separated by a delim-
iter, e.g. a semicolon [3, 14, 21, 27, 34, 44].

p5. End-of-line comments: the ability to comment out parts of a SQL
statement, meaning that the RDBMS will not take notice of the SQL
syntax followed by a comment symbol. For example, some RDBMSs
uses ’–’ as a comment symbol. symbol [2, 3, 21, 27, 28, 31, 32, 36, 37,
39, 55, 60, 63, 65].

p6. Privileged accounts: Accounts defined in the database are used by
database connections to access the database. An attacker could only
use attack methods that execute SQL statements associated with de-
fined privileges in the account used by the web application. For ex-
ample, if the account does not specify DELETE as a privilege, the
attacker can not use m4 as attack method.[36, 37]

p7. Error messages: Errors that occur in the RDBMS or in any server-
side script or program can produce an error message that can be sent
to the client and printed in the web browser. [3, 21, 15, 28, 31, 36, 37,
39, 55, 63].

45

p8. Weak data types: Several script and programming languages used
in web application development support variables of weak type9, i.e.
variables that can store data of arbitrary type. [2, 12, 13, 34]

p9. Data type conversion: Several RDBMSs support variable type con-
version, e.g. allowing numeric values to be converted automatically
into a string type. [28]

p10. Stored procedures: Such procedures, supported by some RDBMSs,
allow execution of system or database commands and SQL sub-routines
in the RDBMS [3, 13, 14, 15, 21, 31, 36, 37, 44, 63].

p11. Dynamic SQL: In order to embed user input into SQL queries, ser-
ver-side scripts and programs can use dynamically built SQL queries
where SQL statements are combined with user input and then sent into
the RDBMS for execution. Another approach is to let dynamically
built SQL queries call stored procedures. [3, 13, 14, 21, 24, 27, 31, 32,
43, 52, 55, 63, 65]

p12. INTO OUTFILE support: If INTO OUTFILE is supported by
the RDBMS, users may print query results into a text file on the
host computer [12].

5.2.5 Vulnerabilities

In section 4.5 on page 37 we presented vulnerabilities. In this section, we
present vulnerabilities that might be inherent in web applications and that
can be exploited by SQL injection attacks. References made in this section
refer to which authors that explicitly mention them as vulnerabilities.

v1. Invalidated input: Unchecked parameters to SQL queries that are
dynamically built can be used in SQL injection attacks. These pa-
rameters may contain SQL keywords, e.g. INSERT or SQL control
characters such as quotation marks and semicolons. [2, 3, 5, 12, 13, 27,
28, 31, 32, 36, 37, 39, 42, 43, 44, 53, 55, 60, 63, 65]

v2. Error message feedback: Error messages that are generated by the
RDBMS, as defined in section 3.4, or other server-side programs may
be returned to the client-side and printed in the web browser. While
these messages can be useful during development for debugging pur-
poses, they can also constitute risks to the application. Attackers can
analyze these messages to obtain information about database or script
structure in order to construct their attack. [3, 8, 15, 21, 27, 37, 39,
43, 55]

9Also referred to by authors as loose data types, soft variables or variables that have
no clear type.

46

v3. Uncontrolled variable size: Variables that allow storage of data that
is larger than expected may allow attackers to enter modified or fab-
ricated SQL statements. Scripts that do not control variable length
may even open for other attacks, such as buffer overrun [3, 36, 43, 53,
63, 65].

v4. Variable morphism: If a variable can contain any data, it is possible
for an attacker to store other data than expected. Such variables
are either of weak type, e.g. variables in PHP, or are automatically
converted from one type to another by the RDBMS, e.g. numeric
values converted into a string type. For example, SQL keywords can
be stored in a variable that should contain numeric. values. [2, 12, 13,
28, 31, 34, 55]

v5. Generous privileges: Privileges defined in databases are rules that
state which database objects an account has access to and what func-
tions the user(s) associated with that account are allowed to perform
on the objects. Typical privileges include allowing execution of ac-
tions, e.g. SELECT, INSERT, UPDATE, DELETE, DROP, on cer-
tain objects. Web applications open a database connections using a
specific account for accessing the database. An attacker who bypasses
authentication gains privileges equal to the account’s. The number
of available attack methods and affected objects increases when more
privileges are given to the account. The worst case is if an account
is associated with the system administrator, which normally has all
privileges. [2, 8, 12, 13, 14, 27, 28, 36, 44, 52, 55]

v6. Dynamic SQL: As defined in section 3.3.1 on page 30, dynamic SQL
refers to SQL queries dynamically built by scripts or programs into a
query string. Typically, one or more scripts and programs contribute
and successively build the query using user input such as names and
passwords as values in e.g. WHERE clauses. The problem with this
approach is that query building components can also receive SQL key-
words and control characters, creating a completely different query
than the intended [2, 4, 14, 24, 26, 32, 34, 43, 52, 65].

v7. Stored procedures: As discussed in section 3.3.2 on page 30, stored
procedures are statements stored in RDBMSs. The main problem us-
ing these procedures is that an attacker may be able to execute them,
causing damage to the RDBMS as well as the operating system and
even other network components. Another risk is that stored proce-
dures may be subject to buffer overrun attacks. System stored proce-
dures that comes with different RDBMS are well-known by attackers
and fairly easy to execute. [3, 4, 12, 21, 28, 36, 44, 53, 63, 65]

47

v8. Client-side-only control: When code that performs input validation
is implemented in client-side scripts only, the security functions of
those scripts can be overridden using cross-site scripting. This opens
for attackers to bypass input validation and send invalidated input to
the server-side. [37, 39, 50, 60, 62]

v9. INTO OUTFILE support If the RDBMS supports the INTO OUT-
FILE clause, an attacker can manipulate SQL queries so that they
produce a text file containing query results. If attackers can later gain
access to this file, they can use information in it in order to e.g. bypass
authentication. [12]

v10. Sub-selects: If the RDBMS supports sub-selects, the variations of
attack methods used by an SQL injection attacker increases. For ex-
ample, additional SELECT clauses can be inserted in WHERE clauses
of the original SELECT clause. [14, 12]

v11. JOIN/UNION: If the RDBMS supports JOIN or UNION, the vari-
ations of attack methods used by an SQL injection attacker increases.
For example, an original SELECT class can be modified with a JOIN
SELECT or UNION SELECT clause. [14, 12]

v12. Multiple statements: If the RDBMS supports JOIN or UNION,
the variations of attack methods used by an SQL injection attacker
increases. For example, an additional INSERT statement could be
added after a SELECT statement, causing two different queries to be
executed. If this is performed in a login form, the attacker may add
himself to the table of users. [12, 14, 21, 34]

5.2.6 Countermeasures

In this section, we present technically oriented countermeasures found during
the part of our survey that concerns prevention techniques against SQL
injection attacks. References made in this section refer to which authors
that explicitly mention them as countermeasures.

c1. Different accounts: Default accounts that come with some RDBMS,
such as the account used by the system administrator, should never be
used for web application access. Instead, different accounts should be
created and used for different client profiles. Moreover, in case that the
RDBMS chosen has a default system administrator password, change
it immediately after installation. [2, 3, 13, 21, 26, 36, 37, 43, 44].

c2. Limited privileges: Permissions granted to database accounts, used
by web applications, should be given according to the principle of
least privilege. The actions made by web applications users on stored

48

procedures should be limited too, i.e. if the intention is to not use or
have unused stored procedures they should be removed or moved to
an isolated server. This minimizes the damage an attacker can cause
in case of authentication bypass. Normally, SELECT is a privilege
that in almost any case will be given to an account. This is used for
logging in to the system and retrieve information. But when logging
in, a user should not have any other privileges such as INSERT or
DELETE [2, 3, 4, 13, 14, 15, 21, 28, 36, 43, 44, 52, 55, 63, 65].

c3. Static SQL: As defined in section 3.3.2 on page 30, static SQL refers
to SQL statements that can not be altered by inserting SQL keywords
where values are expected. Examples of static SQL include taking
advantage of prepared statements and the use of stored procedures.
This countermeasure implies that static SQL should be used in favor
of dynamic SQL, which should be avoided. [2, 3, 8, 15, 24, 26, 32, 34,
36, 52, 65]

c4. Error handling: Error messages generated by RDBMSs or web servers
should never be passed back to the client-side since they may contain
information about database and script structure. Instead, handle error
messages at the server-side and send back messages to the client-side
that do not contain information that could be used for SQL injection
attacks. [2, 3, 8, 43]

c5. Input validation: All data sent by the client-side should be considered
potentially harmful. While input validation could be implemented in
client-side scripts for performance factors, one should never rely on
client-side scripts for security. Therefore, every parameter sent from
the client-side should always be examined and validated by server-
side scripts and programs. This could be done by for example using
comparison and replacing functions if the development platform en-
ables it. Developers can otherwise write such functions themselves.
One can also take advantage of regular expressions. If concatena-
tion is necessary, then use numeric values for the concatenation part
or check the input for malicious character strings and sequences, e.g.
SQL keywords, such as UNION, or meta characters and SQL con-
trol characters such as single and double quotation marks and semi-
colons. [2, 3, 5, 12, 13, 15, 21, 24, 26, 28, 31, 32, 34, 36, 37, 39, 42, 43,
44, 52, 53, 55, 60, 63, 65]

c6. Character escaping: In case characters such as quotation marks or
semicolons must be allowed, for example if arbitrary text should be ac-
cepted, those characters should be escaped using a scheme, e.g. ASCII
code or using bind variables. [3, 12, 21, 24, 26, 31, 32, 36, 42, 53, 55,
60, 63]

49

c7. Stored procedure limitation: Limit the use of system stored pro-
cedures that follow with an RDBMS. Stored procedures that are not
intended to be used should be removed or made inaccessible. [15, 26,
28, 44]

c8. Variable size: Control variable length and size [3, 4, 21, 26, 36, 43,
53, 65].

c9. Strong typing: try to avoid weak variables that have either no clear
type, e.g. variables in PHP, or are automatically converted from one
type to another by components such as the RDBMS. Instead, make
sure that variables are explicitly typed. In case variables of weak type
need to be used, check their content. [2, 12, 13, 15, 28, 31, 34, 55]

5.3 SQL Injection Security Model

One objective given in section 1.5.1 on page 8 was to create a general secu-
rity model for SQL injection. We have compiled how different components,
expressed as general criteria and defined in previous sections, relate to each
other into such a model, shown in tables 2, 3 and 4. In this model, we start
by choosing an attack method and define at which security services it aims.
Then, we list the prerequisites needed to commit attacks using that method,
continuing with presenting the vulnerabilities needed. Finally, countermea-
sures used for protecting web applications against the chosen method are
presented.

Most of the lists found under services, prerequisites, vulnerabilities and
countermeasures contain several items. Not all items contained in such lists
are always necessary conditions. Our model merely represent an attackers
tool box when planning and committing SQL injection attacks. Further
relationships between items in the list will be presented in sections 5.4 sec-
tion 6.

We will use this model in the process of evaluating existing prevention
techniques, covered in section 6.

5.4 SQL Injection Attack Examples

We have studied various attack examples as well as tested them in our
system, mentioned in section 1.8 on page 12. Our intention is not to describe
every type of attack method and their variations, since they can be studied
in our referenced research material. However, for issues of clarity, we present
examples that both give information on how SQL injection attacks could be
performed and how we processed attack examples during the creation of our
model, shown in tables 2, 3 and 4.

Attacks on the database can be made in order to gain access to the web
application, and thus threatening the application’s authentication security

50

Attacks: a1.1. Authentication bypass a1.2. Information retrieval
Services: s3. Authenticity s4. Confidentiality
Prerequisites: p5. End-of-line comments p1. Sub-selects

p7. Error messages p2. JOIN clause
p8. Weak data types p3. UNION clause
p9. Data type conversion p4. Multiple statements
p11. Dynamic SQL p5. End-of-line comments
p12. INTO OUTFILE support p6. Privileged accounts

p7. Error messages
p8. Weak data types
p9. Data type conversion
p10. Stored procedures
p11. Dynamic SQL
p12. INTO OUTFILE support

Vulnerabilities: v1. Invalidated input v1. Invalidated input
v2. Error message feedback v2. Error message feedback
v3. Uncontrolled variable size v3. Uncontrolled variable size
v4. Variable morphism v4. Variable morphism
v6. Dynamic SQL v5. Generous privileges
v8. Client-side-only control v6. Dynamic SQL
v9. INTO OUTFILE support v7. Stored procedures

v8. Client-side-only control
v9. INTO OUTFILE support
v10. Sub-selects
v11. JOIN/UNION
v12. Multiple statements

Countermeasures: c3. Static SQL c1. Different accounts
c4. Error handling c2. Limited privileges
c5. Input validation c3. Static SQL
c8. Variable size c4. Error handling
c9. Variable morphism c5. Input validation

c6. Character escaping
c7. Stored procedure limitation
c8. Variable size
c9. Variable morphism

Table 2: SQL injection security model, attack methods a1.1 and a1.2

51

Attacks: a1.3 Information manipulation a1.4 Information fabrication
Services: s1. Access control s1. Access control

s5. Integrity s5. Integrity
Prerequisites: p4. Multiple statements p4. Multiple statements

p5. End-of-line comments p5. End-of-line comments
p6. Privileged accounts p6. Privileged accounts
p7. Error messages p7. Error messages
p8. Weak data types p8. Weak data types
p9. Data type conversion p9. Data type conversion
p10. Stored procedures p10. Stored procedures
p11. Dynamic SQL p11. Dynamic SQL

Vulnerabilities: v1. Invalidated input v1. Invalidated input
v2. Error message feedback v2. Error message feedback
v3. Uncontrolled variable size v3. Uncontrolled variable size
v4. Variable morphism v4. Variable morphism
v5. Generous privileges v5. Generous privileges
v6. Dynamic SQL v6. Dynamic SQL
v7. Stored procedures v7. Stored procedures
v8. Client-side-only control v8. Client-side-only control
v12. Multiple statements v12. Multiple statements

Countermeasures: c1. Different accounts c1. Different accounts
c2. Limited privileges c2. Limited privileges
c3. Static SQL c3. Static SQL
c4. Error handling c4. Error handling
c5. Input validation c5. Input validation
c6. Character escaping c6. Character escaping
c7. Stored procedure limitation c7. Stored procedure limitation
c8. Variable size c8. Variable size
c9. Variable morphism c9. Variable morphism

Table 3: SQL injection security model, attack methods a1.3 and a1.4

52

Attacks: a1.5. Information deletion a2. Command execution
Services: s2. Availability s1. Access control

s5. Integrity s2. Availability
s3. Authenticity
s4. Confidentiality
s5. Integrity

Prerequisites: p4. Multiple statements p4. Multiple statements
p5. End-of-line comments p5. End-of-line comments
p6. Privileged accounts p6. Privileged accounts
p7. Error messages p7. Error messages
p8. Weak data types p8. Weak data types
p9. Data type conversion p10. Stored procedures
p10. Stored procedures p11. Dynamic SQL
p11. Dynamic SQL

Vulnerabilities: v1. Invalidated input v1. Invalidated input
v2. Error message feedback v2. Error message feedback
v3. Uncontrolled variable size v3. Uncontrolled variable size
v4. Variable morphism v4. Variable morphism
v5. Generous privileges v5. Generous privileges
v6. Dynamic SQL v6. Dynamic SQL
v7. Stored procedures v7. Stored procedures
v8. Client-side-only control v8. Client-side-only control
v12. Multiple statements v12. Multiple statements

Countermeasures: c1. Different accounts c1. Different accounts
c2. Limited privileges c2. Limited privileges
c3. Static SQL c3. Static SQL
c4. Error handling c4. Error handling
c5. Input validation c5. Input validation
c6. Character escaping c6. Character escaping
c7. Stored procedure limitation c7. Stored procedure limitation
c8. Variable size c8. Variable size
c9. Variable morphism c9. Variable morphism

Table 4: SQL injection security model, attack methods a1.5 and a2

53

service (s3)10. Suppose that an attacker would like to try and log in into a
system that uses a web interface which has not been protected from SQL
injection attacks. This might be the first step an attacker takes in order to
be able to commit further attacks on an application. In order to do this,
an attacker might try to analyze how a login page, like the one in figure 10
below might be exploited.

Figure 4: A login form

In order for that to work, a few prerequisites are needed, and some related
vulnerabilities should be left non-handled. To begin with, the application
must support dynamic SQL queries (p11 and v6), and the application should
not validate the user’s input (v1) or control the input’s type and size (p8, v3
and v4). Furthermore, if it also displays server-side-generated error messages
in the user’s web browser (p7 and v2), it would give helpful feedback. Finally,
it would be useful to the attacker if end-of-line comments are supported
(p5). The attacker may begin the attack by entering some chosen symbols
and SQL keywords in the login page fields and analyzing the error messages.
Following Anley’s [3] example, suppose that the attacker prints the following
in the login field:

Username: ’ having 1=1--

The error message returned might be:

Microsoft OLE DB Provider for ODBC Drivers error ’840e14’

[Microsoft][ODBC SQL Server Driver][SQL Server]Column
’users.id’ is invalid in the select list because it is
not contained in an aggregate function and there is no
GROUP BY clause.

/process_login.asp, line 35

This error message contains information about the SQL query: it concerns
a table named users with a column named id. The attacker continues
investigating the query by writing:

10We list in parenthesis the relevant attack method, security services, means, prerequi-
sites, vulnerabilities or countermeasures by referring to the symbols denoted in section 5.2

54

Username: ’ group by users.id having 1=1--

Which results in the error message:

Microsoft OLE DB Provider for ODBC Drivers error ’840e14’

[Microsoft][ODBC SQL Server Driver][SQL Server]Column
’users.username’ is invalid in the select list because
it is not contained in either an aggregate function or
the GROUP BY clause.

/process_login.asp, line 35

So now the attacker knows that the table also contains the column name
username. The attacker may continue to acquire information about the
query (the exact technique is explained Anley’s article) until he recovers the
entire syntax used by the script to build the dynamic SQL query:

"SELECT * FROM users WHERE username = ’" + username + "’
AND password = ’" + password + "’"

The attacker could now bypass the authentication control by entering the
following fragment into the username field:

Username: ’ OR 1=1--

Upon concatenating that input into the SQL query, the following query will
be send to the database:

SELECT * FROM users WHERE username = ’’ OR 1=1--
(the rest of the statement is ignored)

The query is sent to a SQL Server database, which returns the rows that
match the query. The script checks whether any rows were returned. If so,
it returns true, indicating that the user is identified. Otherwise, the script
returns false meaning no such user is registered in the database. The system
considers the user authenticated or not based on the return value received
from the script or program that requested the execution of the query, and
allows the user to use it if confirmed.

Since the conditions in the WHERE clause will be evaluated to true,
the query will return a result containing all users in the database. As a
consequence, the script will also return true, and the query yields a valid
user who’s identity the attacker would assume while using the system. The
attacker will have the privileges specified in the account used for accessing
the RDBMS. Different accounts may have been defined in the RDBMS and
application logic may choose different accounts for different users. In case all
rows are returned, they might have been sorted by the RDBMS according

55

to id, name or some other criteria. The application logic may determine
which user is logging in due to the result set by looking at the first row.
The system administrator may be the first user defined in the table of users,
hence having the lowest id. Therefore, if the application logic chooses the
first row, it is likely that the attacker will log in as the system administrator
and normally, that account will be given all privileges [21, 31, 55].

Suppose that the attacker would now want to continue the attack, but
instead of bypassing authentication control, he would attempt to insert a
fabricated user identity into the database table, which he could later use for
further attacks. The attacks would thus attempt to fabricate information
(a1.4) and would endanger the application’s access control security service
(s1) as well as its integrity (s5). The attacker would now need a way to ma-
nipulate the application into entering the user identity into the users table
in the database. This could be done in a few ways: the attacker could try to
call a stored procedure (if such exists in the RDBMS used by the applica-
tion) that would enter a row into the users table (a2). A second way would
be to try and find a field in the application that is used for entering informa-
tion into the database, and tamper with it (a1.4). A third way would be to
manipulate the above mentioned login field query and add to it an INSERT
statement (a1.4). This would be possible if the RDBMS supports multiple
statements (p4). Regardless of the approach taken, the account chosen by
the web application when the attacker circumvented authentication would
need to have the corresponding privileges. For example, either one of the
latter two choices world require the privilege INSERT on the table users.
This could be expressed in terms of privileged accounts p6 and v5.

All the attacker needs to do is to find out exactly which fields the users
table contains and which types each column requires (as explained above
and in Anley’s article), and then enter the manipulating data into the login
field. That data could look like the example below:

’; INSERT INTO users(username, password)
VALUES(’hacker’, ’666’);

This would yield the following query:

SELECT * FROM users WHERE username = ’’;
INSERT INTO users(username, password)
VALUES(’hacker’, ’666’);

Once the manipulated query executes in the database, it would result in a
new row in the users table containing the attacker’s fabricated identity.

56

6 Model Analysis

In this section, we comment some attributes of the model covered in sec-
tion 5: we reflect on some important aspects of the model, explain our view
on how it should be used, compare the countermeasures in our model with
other authors’ suggestions, and propose an outline for how the model should
be implemented.

6.1 Aspects of the Model

We discuss in this section those aspects of the model that we consider central
for our results.

6.1.1 Static vs. Dynamic SQL

Some authors suggest that the usage of dynamic SQL in web applications
is one of the major reasons for that successful SQL injection attacks can
be committed [2, 4, 14, 24, 26, 34, 43, 65]. The usage of static SQL may
dramatically reduce that risk, since the original SQL query may not be
changed, as explained in section 3.3.2 on page 30. Other authors point
out, that some applications could not be implemented solely with static
SQL, since it would make the implementation too complex [65]. We concur
that static SQL is a very effective countermeasure, but not fail-proof [2, 3,
8, 15, 24, 26, 32, 34, 36, 52, 65]. Defending an application against SQL
injection attacks using a single countermeasure might be dangerous, due to
the following factors:

• SQL injection attacks can still be committed, according to Anley [4],
though the application only uses static SQL. That could occur when
for example the exec stored procedure is used in SQL server.

• Even if the risk of SQL injection is not so large, other attack tech-
niques, such as buffer overrun, may still exploit the same vulnerabili-
ties to perform an attack.

• Using static SQL, and especially stored procedures, could enable an
attacker to perform harmful attacks on the application and even the
host or network, as explained in section 5.2.5 on page 46. Naturally,
execution of such stored procedures through web applications requires
that dynamic SQL is used, though one should still be careful and only
allow the most necessary stored procedures to be available, and keep
user access to them according to least-privilege principle.

6.1.2 RDBMS Support

Some prerequisites in our model are only supported by some RDBMSs and
not by others. For example, stored procedures are supported by MS SQL

57

Server and Oracle RDBMSs, but not by MySQL11. Among others, SQL
injection-related differences may include variations in support of sub-selects,
multiple statements, end-of-line comments, UNION and JOIN clauses, INTO
OUTFILE clause and default administrator accounts [12]. These prerequi-
sites are related to the following vulnerabilities:

• Sub-selects, UNION and JOIN clauses, and multiple statements may
allow execution of concatenated queries in the RDBMS.

• End-of-line comments may allow manipulation of the query.

• The INTO OUTFILE clause may allow attackers to output database
information into a file that might be available in some way, exposing
personal or corporation-sensitive information.

• Default administrator accounts might carelessly be used and give users
privileges beyond their need. If such accounts are used as web appli-
cation accounts, an attacker who succeeds in bypassing authentication
may cause more substantial damage.

We would like to stress that the choice of RDBMS, made when a web
application is to be developed, should among other factors even consider
these prerequisites and related vulnerabilities. For example, if the Oracle
RDBMS is used, one must take into consideration that a few countermea-
sures must be taken, such as stored procedures and privilege limitation. On
the other hand, the multiple statements vulnerability does not concern Ora-
cle RDBMS users, since it is not supported. We would further like to suggest
that our model could be used as a base for decision-making when choosing
an RDBMS to be used in a web application.

6.1.3 Input Validation

Many authors consider input validation to be a vital countermeasure against
SQL injection [2, 3, 5, 12, 13, 15, 21, 24, 26, 28, 31, 32, 34, 36, 37, 39, 42, 43,
44, 53, 55, 60, 63, 65]. This, in combination with related countermeasures,
such as character escaping and variable type and size control, can be used
to control user input and allow only valid data to be used. There are two
approaches concerning input validation. The first one is to actively search for
unwanted SQL fragments or symbols in the user input, and to replace them
with legitimate characters or symbols. The other approach is to define which
symbols are allowed and throw away all input that is different. The problem
with the first approach is that new symbol or character combinations which
can be used for attacks may be found in the future, causing the application

11We refer here to the list of specific RDBMS supported prerequisites made by
Eizner [12], and we have not researched in depth whether new versions of these RDBMSs
supports other prerequisites.

58

to be vulnerable. The problem with the second approach is that it is difficult
to know in advance which characters or symbols will be used throughout the
application lifetime.

We consider input validation to be an important countermeasure, but
would like to emphasize that it should be combined with other counter-
measures such as static SQL, privilege limitation, error handling etc. The
reason for this is to defend the application in different ways and levels: if an
attacker decides to commit an attack on an organization’s web application,
there should as many attempts to stop him from damaging the application
as possible, both in the application’s logic components and in the RDBMS.

6.2 How to use the Model

Our intentions in this thesis were originally to review as much SQL injection-
related documentation as possible and to summarize it in a way that would
allow insight into the problem. We hope that our security model, and the
tables presenting it, contribute to that goal. We have collected much mate-
rial about SQL injection and have tried to present it in a way that would
help understanding it. Since our discussion concerns SQL injection attack
methods and related components, we decided that the best way to present
the information was by starting out at the attacks, allowing us to think the
way an attacker might do. Then, we tried mapping other related compo-
nents to the attack, thus listing what the attacker is trying to gain, which
prerequisites must exist for the attack to succeed, which vulnerabilities are
being exploited, and finally, what can be done to prevent them. We hope
that anyone who is interested in an overview of SQL injection could find it
here.

By listing all model components together with a reference to the authors
who describe them, and particulary by presenting which authors recommend
different countermeasures, as listed in 6.4, we hope to help anyone who is
interested in further information research to find it easily. Since different
authors concentrated on different aspects of SQL injection, our model could
also be used as a tool for evaluation of related articles. We have, during
our research, encountered numerous authors who claim that SQL injection
is a problem which one could easily solve, using static SQL or input valida-
tion as countermeasures. We believe that, as Anley claims, “It is extremely
dangerous to place your faith in a single defence” [4]. In order to make an
application safe from SQL injection attacks, we recommend that all coun-
termeasures should be considered and applied.

We would also like to consider this model a decision-making help tool
which, for example, could be used when choosing between RDBMSs. Thus,
one could use the model to see which prerequisites and vulnerabilities one
should be aware of, as explained in section 6.1.2. Furthermore, the model
could be of help when conducting a risk analysis, or when evaluating a

59

web application for how well it is protected against SQL injection attacks.
Ultimately, we suggest that this model could be used as a guide for web
application designers as an aid for design-related decision making during
the process.

Finally, we would like to suggest this model as an example for how
security problems could be surveyed. We believe that by collecting much
information about a specific area such as SQL injection, and by grouping
and mapping its components, we achieved a better understanding of the
problem and presented it in a way that would help dealing with it. We
believe that other issues, whether more complex or at the same level of
complexity, should also be surveyed in a comprehensive way, and we suggest
that one could follow our example.

6.3 Aspects of Existing Prevention Techniques

In section 1.6 on page 10 we listed a set of aspects and hoped that a general
SQL injection security model could help us to determine if those aspects are
taken into account by the contributors of existing prevention techniques.
We will now try to test whether our model complies to that objective by
giving one example, where we examine one of the existing techniques. We
choose the technique given by Spett [62, 63] and start with extracting items
in groups, given in section 5.2, that the author has taken into account12.

Spett covers attack methods authentication bypass, information retrieval,
information fabrication and command execution (a1.1, a1.2, a1.4 and a2)13.
Furthermore, prerequisites sub-selects, UNION clause, end-of-line comments,
error-messages, stored procedures and dynamic SQL is covered (p1, p3, p5,
p7, p10 and p11). Additionally, vulnerabilities invalidated input, uncon-
trolled variable size, stored procedures and client-side-only control (v1, v3,
v7 and v8) are mentioned. Finally, Spett discusses countermeasures limited
privileges, input validation and character escaping (c2, c5 and c6).

By using our security model, we find out that the attack methods covered
by Spett together may compromise security services s1, s2, s3, s4 and s5.
This indicates that the contributor has tried to implement all our defined
security services. However, this prevention technique does not conform to
our general criteria, since all attack methods, prerequisites, vulnerabilities
and countermeasures are not covered. Moreover, since all vulnerabilities
are not covered, the technique has left out some vulnerabilities that SQL
injection attacks may exploit. This technique considers stored procedures
as a vulnerability and explicitly mentions uncontrolled variable size as a

12We want to point out that our intention has not been to reduce the value of any
article. Rather, we intend to use this article as an example where the author’s suggested
countermeasures might not cover all vulnerabilities

13We list in parenthesis the relevant attack methods, security services, means, prerequi-
sites, vulnerabilities or countermeasures by referring to the symbols denoted in section 5.2.

60

vulnerability too. But no information has been given by Spett that men-
tions uncontrolled variable size (v3) as a problem of concern when using
stored procedures (v7). Furthermore, the countermeasure for v7, variable
size (c8), is not given. This indicates that the web application may be sub-
ject for buffer overrun attacks in case stored procedures are used, and that
other countermeasures are needed. In summary, we conclude that this tech-
nique does not overcome all threats associated with SQL injection and that
weaknesses have been revealed.

We have come to the conclusion that our model comply with our ob-
jectives, since answers to our stated aspects could be given for an example
prevention technique. However, this does not necessarily mean that an at-
tempt to reveal all answers for all prevention techniques would be successful.

6.4 Countermeasure Comparison

In section 1.5.1 on page 8, we set out an objective to perform a comparison
between required countermeasures and countermeasures taken into account
in existing prevention techniques. We have constructed a matrix, shown
in table 5, which lists which countermeasures are accounted for in each
prevention technique. Instead of naming the prevention techniques, their
contributors are given.

In section 1.6 on page 10, we hoped that the matrix would reveal, with re-
spect to proposed countermeasures, weaknesses in existing prevention tech-
niques.

After inspecting the matrix, we might assume that the required counter-
measures would constitute all countermeasures stated in our security model
and to discard the suggested prevention techniques since none of them live
up to that requirement. However, the task of identifying the required coun-
termeasures has not been as easy as we thought. In order to fully understand
what conclusions could be drawn from this matrix, we need to discuss under-
lying assumptions and circumstances inherent in the prevention techniques
that we have encountered during our survey.

The intentions with a prevention technique differ among authors. This
also holds regarding the scope of SQL injection and the degree of generaliza-
tion in authors’ documents. Some authors have, deliberately or not, chosen
to only cover a few aspects of the problem. Examples of this include consid-
ering only a subset of the available attack methods, looking more carefully
at vulnerabilities and focus less on countermeasures and only cover a few
vulnerabilities. Another factor is that some authors have been thorough
in there attempts to cover the problem. Others, on the other hand, ei-
ther reference the work of their predecessors or assume that readers already
are experienced with SQL injection, only adding one or more pieces to the
puzzle.

61

Author c1
. D

iff
er
en

t A
cc
ou

nt
s

c2
. Li

m
ite

d
Pr

iv
ile

ge
s

c3
. St

at
ic

SQ
L

c4
. Er

ro
r
H
an

dl
in
g

c5
. In

pu
t Va

lid
at
io
n

c6
. Cha

ra
ct
er

Es
ca
pi
ng

c7
. St

or
ed

Pr
oc

ed
ur

e

c8
. Va

ria
bl
e
Si
ze

Li
m
ita

tio
n

c9
. St

ro
ng

Ty
pi
ng

Andrews [2] x x x x x x
Anley [3, 4] x x x x x x x
Atkins [5] x
Cerrudo [8] x x
Eizner [12] x x x
Farrow [13] x x x x
Finnigan [14, 15] x x x x x
Harper [21] x x x x x
Jepson [24] x x x
Kiely [26] x x x x x x
Kok [28] x x x x
Litchfield [31] x x x
Litwin[32] x x x
Macromedia [34] x x x
McDonald [36] x x x x x x
Meer [37] x x
Memonix & MrJade [39] x
Newman [42] x x
Overstreet [43] x x x x x
Peikari and Fogie [44] x x x x
Qualls [53] x x x
Robertson [55] x x x x
Sonnemans [60] x x
Spett [63] x x x
Talmage [65] x x x x
Yvel [52] x x x

Table 5: Countermeasure comparison

62

We have found one concrete example of ambiguous reasoning that con-
cerns vulnerabilities and countermeasures: a majority of the authors con-
template dynamic and static SQL differently in that they either reject dy-
namic SQL and favor static SQL, or vice versa. Some authors even suggest
that both dynamic and static SQL are subjects for vulnerabilities. The
standpoint taken here will ultimately have an impact on suggested coun-
termeasures. Those who state that dynamic SQL is a vulnerability suggest
static SQL as countermeasure and devote less attention to input valida-
tion. The other group conclude that invalidated input is the problem, not
dynamic SQL itself, and therefore heavily stress the importance of input
validation. Some authors in that group have even stated that static SQL is
also a vulnerability. Hence, if the first approach is followed, static SQL is not
proposed as countermeasure. Of course, we have a minority of techniques
that suggest countermeasures that combine the two approaches. The prob-
lem here is to claim who is right. Nevertheless, this clearly indicates that it
is difficult to claim a prevention technique that does not propose static SQL
as countermeasure to be less effective, if it at the same time mentions input
validation.

Another implication is that the majority of authors have been discussing
SQL injection in the context of a particular RDBMS. As showed in our se-
curity model, different attack methods require different prerequisites. While
some of the prerequisites concern programming languages, most of them re-
fer to properties of RDBMS. Therefore, authors may be influenced of the
properties in the type of RDBMS used in their discussion when suggesting
countermeasures.

Due to implications discussed above, we can not in general give a com-
prehensive opinion that claims to what extent existing prevention techniques
are effective. However, in our method given in section 1.5 on page 8 we state
that we are not measuring the effects of SQL injection attack methods and
the effectiveness of common prevention techniques empirically. Instead, we
theorize about effects and effectiveness. The inconsistencies and weaknesses
introduced above and in section 6.3 thus support this survey’s purpose.

Furthermore, our matrix shows differences among authors with respect
to proposed countermeasures, and that no single contributor has taken every
countermeasure stated in our security model into account. In section 6.1.3
on page 58, we stress that if dynamic SQL is prohibited in a web appli-
cation and replaced with static SQL in conjunction with input validation,
an attacker’s arsenal will be considerably limited. As a consequence, if
prevention techniques do not mention static SQL and input validation as
countermeasures, we consider them to be less effective and should be used
as complementary techniques. Such techniques are identified in our matrix.

Taken the aspects mentioned above into account, our matrix reveals
weaknesses in existing prevention techniques. However, since we could not
define the complete set of countermeasures required, the matrix can not give

63

enough information to enable a thorough comparison. Therefore, we fail in
achieving the second statement listed under our second objective, given in
section 1.6. The matrix merely validates that our security model can serve
as a valuable tool for evaluating material of SQL injection, evaluating web
applications with respect to SQL injection vulnerability, decision support
when choosing web application components, and guidelines during web ap-
plication development.

64

7 Epilogue

7.1 Discussion

Our choice of confronting SQL injection from a general perspective enabled
us to classify SQL injection and compile all of the aspects we found into
a single, coherent security model. We have speculated and theorized how
this model can contribute to the problem of SQL injection, as stated in
section 1.2 on page 6. By summarizing the aspects involved, concerned
readers may easier gain a better understanding of the overall picture of SQL
injection. Moreover, we believe this model to be a useful checklist when
evaluating to what degree web applications are vulnerable to SQL injection
attacks. This model also presents what aspects to look for when reading
and evaluating articles about SQL injection. Furthermore, the model gives
valuable clues on how other web application security problems could be
confronted.

We have also stated that our security model can be used for revealing
weaknesses in existing prevention techniques against SQL injection. This has
been further supported by the matrix constructed from our model. Though,
we could not determine the complete set of countermeasures needed by any
given existing prevention technique for a completely accurate comparison.

While an attempt to present new prevention techniques is outside the
scope of this thesis, one question arises: does our model and matrix together
reveal a combination of countermeasures into a more effective technique for
dealing with SQL injection then existing ones? The answer to this question
is no, mainly because we could not define the optimal combination of coun-
termeasures to be used in our comparison of existing prevention techniques,
with respect to countermeasures, as discussed in section 6.4. Consequently,
we have no support for our recommendation made in section 6.2 on page 59.
Our second objective, stated in section 1.6 on page 10, could not be com-
pletely fulfilled. Nevertheless, the information given in the matrix, combined
with our security model and deeper insight of SQL injection indicates that
one should be suspicious of material on SQL injection in general and sug-
gested prevention techniques in particular.

The inductive approach taken in this thesis is subject for various prob-
lems related to its reliability. The material found regarding SQL injection
may not be that exhaustive that we assumed. There might exist material
that we have not found, foremost due to incomplete search criteria. Our de-
limitations may also contribute to reliability problems, especially the choice
of not including direct attacks in the area of SQL injection. Another factor
is that the aspects and characteristics included in our security model are
based upon our own insights and assumptions during the survey.

These implications might very well be subject to at least three sources
of errors. First, we might not have extracted all characteristics regarding

65

SQL injection, such as vulnerabilities and countermeasures. The other thing
concerns the risk that we may have missed some aspects regarding charac-
teristics, e.g. there might exist more countermeasures than we have found.
Finally, we could have misinterpreted the contributors intentions and results.

However, in our defence we will point out the lack of comprehensive
material available for us regarding SQL injection. This, of course, further
contributes to our validity problems. Information found in documents and
reports have often been gathered and written by authors with several years
of technical experience. But the structure and language used in the material
presented us with differences in extracting knowledge from the documents.

7.2 Future Work

In this thesis, we have concentrated on the specific area of SQL injection.
Though this is a narrow subject, we consider the processes of collecting doc-
umentation and analyzing all documentation we have found to be a complex
task. We believe that this area is in need of further investigation, mainly
because of two reasons: first, we can not be certain that we have compiled
a definite list of all components that could be taken into consideration. Sec-
ondly, SQL injection attacks are most likely to evolve and new vulnerabilities
will be found, together with new countermeasures to deal with them. Since
many hacking sites are available on the web, and since attack methods are
well described and distributed between hackers, we believe that informa-
tion about new attack methods should continuously be surveyed and new
countermeasures should be developed.

According to OWASP’s Ten Most Critical Web Application Security
Vulnerabilities [49], many SQL injection-related issues are among the most
harmful threats to web applications. Since we have in this thesis only covered
SQL injection aspects, we would like to suggest that further studies should
be made on other threats to related security issues, especially such that relate
to application security. The reason is that several authors have mentioned
that organizations spend most security resources on operating system and
network level security [29, 49, 62], and not enough on application layer
security. If further studies will be made on application layer security issues,
and particulary on web application, it would be possible to compile results
from all of these into general security guidelines, which could be used in
developing more secure web applications.

One of our goals in this thesis was to increase the level of security aware-
ness among organizations regarding web applications, especially towards
SQL injection threats. We hope that further surveys in this area and in
related web application subjects will help achieving that goal, so that hope-
fully security standards will be implemented and countermeasures built into
applications during development. Ultimately, organizations will use a proac-
tive approach towards application layer security, which will then be an in-

66

dispensable part of web applications.

7.3 Concluding Remarks

Besides the problems described in section 7.1, we think that our results are
promising in that as far as we are concerned, this is the first attempt to
analyze SQL injection from a general perspective and to gather many of
its characteristics. Our research material constitutes resources that supply
readers with more technical details, including particular programming envi-
ronments, RDBMSs, and information about how to program and configure
web application components. In contrast, our security model gives insights
into what aspects to look for in such material. Furthermore, for evalua-
tion purposes, our classification also presents which attack methods, pre-
requisites, vulnerabilities and countermeasures different authors cover. We
have used our general criteria and security model to confront one existing
technique. We also presented gathered techniques and proposed counter-
measures into a matrix. The results of those processes revealed weaknesses:
not all prevention techniques proposed by authors can be claimed effective,
since different techniques present different countermeasures and the authors’
underlying discussions do not cover all attack methods, prerequisites, vul-
nerabilities and countermeasures presented in our model.

67

References

[1] Ross J. Anderson. Security Engineering. John Wiley & Sons, Inc., 2001.

[2] Chip Andrews. Sql injection faq. Web advisory, apr 2003. http://
www.sqlsecurity.com/DesktopDefault.aspx?tabindex=2&tabid=3.

[3] Chris Anley. Advanced sql injection in sql server application. Technical
report, NGSSoftware Insight Security Research (NISR), 2002. http:
//www.nextgenss.com/papers/advanced_sql_injection.pdf.

[4] Chris Anley. (more) advanced sql injection in sql server applica-
tion. Technical report, NGSSoftware Insight Security Research (NISR),
jun 2002. http://www.nextgenss.com/papers/more_advanced_sql_
injection.pdf.

[5] Craig Atkins. Data sanitization - reducing security holes in an asp web
site. Web advisory, 2003. http://www.4guysfromrolla.com/webtech/
112702-1.shtml.

[6] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley Longman Inc., 1999.

[7] CERT Coordination Center, DoD-CERT, the DoD Joint Task Force for
Computer Network Defense (JTF-CND), the Federal Computer Inci-
dent Response Capability (FedCIRC), and the National Infrastructure
Protection Center (NIPC). Cert r© advisory ca-2000-02 malicious html
tags embedded in client web requests. Technical report, Carnegie Mel-
lon Software Engineering Institute, feb 2002. http://www.cert.org/
advisories/CA-2000-02.html.

[8] Cesar Cerrudo. Manipulating microsoft sql server using
sql injection. Technical report, Application Security, Inc.
http://www.appsecinc.com/presentations/Manipulating_SQL_
Server_Using_SQL_Injection.pdf.

[9] Robert Chartier. Application architecture: An n-tier approach - part
1. Online Documentation, 2001. http://www.15seconds.com/issue/
011023.htm.

[10] Thomas Connolly, Carolyn Begg, and Ann Strachan. Database Systems
- A Practical Approach to Design, Implementation, and Management.
Addison - Wesley, 1999.

[11] Microsoft Corporation. https protocol. Online Documenta-
tion, 2003. http://msdn.microsoft.com/workshop/networking/
predefined/https.asp.

68

http://www.sqlsecurity.com/DesktopDefault.aspx?tabindex=2&tabid=3
http://www.sqlsecurity.com/DesktopDefault.aspx?tabindex=2&tabid=3
http://www.nextgenss.com/papers/advanced_sql_injection.pdf
http://www.nextgenss.com/papers/advanced_sql_injection.pdf
http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf
http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf
http://www.4guysfromrolla.com/webtech/112702-1.shtml
http://www.4guysfromrolla.com/webtech/112702-1.shtml
http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html
http://www.appsecinc.com/presentations/Manipulating_SQL_Server_Using_SQL_Injection.pdf
http://www.appsecinc.com/presentations/Manipulating_SQL_Server_Using_SQL_Injection.pdf
http://www.15seconds.com/issue/011023.htm
http://www.15seconds.com/issue/011023.htm
http://msdn.microsoft.com/workshop/networking/predefined/https.asp
http://msdn.microsoft.com/workshop/networking/predefined/https.asp

[12] Martin Eizner. Direct sql command injection. Technical report, The
Open Web Application Security Project, 2001. http://qb0x.net/
papers/MalformedSQL/sqlinjection.html.

[13] Rik Farrow. Databases under fire. Web advisory, may 2002. http:
//www.airscanner.com/pubs/sql.pdf.

[14] Pete Finnigan. Sql injection and oracle, part one. Technical report,
Security Focus, nov 2002. http://www.securityfocus.com/infocus/
1644.

[15] Pete Finnigan. Sql injection and oracle, part two. Technical report,
Security Focus, nov 2002. http://www.securityfocus.com/infocus/
1646.

[16] JD Glaser. One-way sql hacking: Futility of firewalls in web
hacking. In Windows Security 2002, Las Vegas, USA, jul 2002.
Black Hat. http://www.blackhat.com/presentations/win-usa-02/
glaser-winsec02.ppt.

[17] Distributed Technologies GmbH. 3- and n-tier architectures. Online
documentation, 1998. http://www.corba.ch/e/3tier.html.

[18] Dieter Gollmann. Computer Security. John Wiley & Sons, 2001.

[19] Network Working Group. Hypertext transfer protocol – http/1.0, re-
quest for comments: 1945. Online Documentation, may 1996. http:
//www.w3.org/Protocols/rfc1945/rfc1945.

[20] Knut Halvorsen. Samhällsvetenskaplig metod. Studentlitteratur, 1992.

[21] Mitchell Harper. Sql injection attacks - are you safe? Technical report,
DevArticles, may 2002. http://www.devarticles.com/content.php?
articleId=138&page=2.

[22] Advosys Consulting Inc. Writing secure web applications. Online Doc-
umentation, jun 2002. http://advosys.ca/papers/web-security.
html.

[23] Andrew Jaquith. The security of applications: Not all are created
equal. Technical report, @stake, feb 2002. http://www.atstake.com/
research/reports/acrobat/atstake_app_unequal.pdf.

[24] Brian Jepson. Beware sql injection in web applications. Web advisory,
jun 2002. http://www.oreillynet.com/pub/wlg/1595.

[25] Himanshu Khatri. Sql server stored procedures 101. Web ad-
visory, jun 2002. http://www.devarticles.com/printpage.php?
articleId=142.

69

http://qb0x.net/papers/MalformedSQL/sqlinjection.html
http://qb0x.net/papers/MalformedSQL/sqlinjection.html
http://www.airscanner.com/pubs/sql.pdf
http://www.airscanner.com/pubs/sql.pdf
http://www.securityfocus.com/infocus/1644
http://www.securityfocus.com/infocus/1644
http://www.securityfocus.com/infocus/1646
http://www.securityfocus.com/infocus/1646
http://www.blackhat.com/presentations/win-usa-02/glaser-winsec02.ppt
http://www.blackhat.com/presentations/win-usa-02/glaser-winsec02.ppt
http://www.corba.ch/e/3tier.html
http://www.w3.org/Protocols/rfc1945/rfc1945
http://www.w3.org/Protocols/rfc1945/rfc1945
http://www.devarticles.com/content.php?articleId=138&page=2
http://www.devarticles.com/content.php?articleId=138&page=2
http://advosys.ca/papers/web-security.html
http://advosys.ca/papers/web-security.html
http://www.atstake.com/research/reports/acrobat/atstake_app_unequal.pdf
http://www.atstake.com/research/reports/acrobat/atstake_app_unequal.pdf
http://www.oreillynet.com/pub/wlg/1595
http://www.devarticles.com/printpage.php?articleId=142
http://www.devarticles.com/printpage.php?articleId=142

[26] Don Kiely. Guarding against sql injection attacks. Web advisory, mar
2002. http://www.itworld.com/nl/windows_sec/03252002/.

[27] Don Kiely. Sql injection attacks. Web advisory, mar 2002. http:
//www.itworld.com/nl/windows_sec/03182002/.

[28] Chong Siew Kok. Sql injection walkthrough. Web advisory, may
2002. http://www.scan-associates.net/papers/sql_injection_
walkthrough.txt.

[29] Matthew Levine. The importance of application security. Techni-
cal report, @stake, jan 2003. http://www.atstake.com/research/
reports/acrobat/atstake_application_security.pdf.

[30] David Litchfield. Exploiting windows nt 4 buffer overruns.
Web advisory, may 1999. http://www.nextgenss.com/papers/
ntbufferoverflow.html.

[31] David Litchfield. Web application disassembly with odbc error
messages. In Windows Security 2001, Las Vegas, USA, jul 2001.
Black Hat. http://www.blackhat.com/presentations/win-usa-01/
Litchfield/bh-win-01-litchfield.doc.

[32] Paul Litwin. Guard against sql injection attacks. Web advisory, aug
2002. http://www.aspnetpro.com/opinion/2002/08/asp200208pl_
o/asp200208pl_o.asp.

[33] Peng Liu. Dais: A real-time data attack isolation system for commer-
cial database applications. In 17th Annual Computer Security Applica-
tions Conference, New Orleans, Louisiana, dec 2001. Annual Computer
Security Applications Conference (ACSAC). http://www.acsac.org/
2001/papers/44.pdf.

[34] Macromedia. Multiple sql statements in dynamic queries. Security
bulletin, feb 1999. http://www.macromedia.com/devnet/security/
security_zone/asb99-04.html.

[35] Tony Marston. The 3-tier architecture - is it hardware or software?
Web advisory, apr 2002. http://www.marston-home.demon.co.uk/
Tony/3tierhardsoft.html.

[36] Stuart McDonald. Sql injection: Modes of attack, defence, and why
it matters. Technical report, The SANS Institute, jul 2002. http:
//www.sans.org/rr/appsec/SQL_injection.php.

[37] Haaron Meer. Sql insertion. Web advisory, 2002. http://www.
cgisecurity.com/lib/SQLinsertion.htm.

70

http://www.itworld.com/nl/windows_sec/03252002/
http://www.itworld.com/nl/windows_sec/03182002/
http://www.itworld.com/nl/windows_sec/03182002/
http://www.scan-associates.net/papers/sql_injection_walkthrough.txt
http://www.scan-associates.net/papers/sql_injection_walkthrough.txt
http://www.atstake.com/research/reports/acrobat/atstake_application_security.pdf
http://www.atstake.com/research/reports/acrobat/atstake_application_security.pdf
http://www.nextgenss.com/papers/ntbufferoverflow.html
http://www.nextgenss.com/papers/ntbufferoverflow.html
http://www.blackhat.com/presentations/win-usa-01/Litchfield/bh-win-01-litchfield.doc
http://www.blackhat.com/presentations/win-usa-01/Litchfield/bh-win-01-litchfield.doc
http://www.aspnetpro.com/opinion/2002/08/asp200208pl_o/asp200208pl_o.asp
http://www.aspnetpro.com/opinion/2002/08/asp200208pl_o/asp200208pl_o.asp
http://www.acsac.org/2001/papers/44.pdf
http://www.acsac.org/2001/papers/44.pdf
http://www.macromedia.com/devnet/security/security_zone/asb99-04.html
http://www.macromedia.com/devnet/security/security_zone/asb99-04.html
http://www.marston-home.demon.co.uk/Tony/3tierhardsoft.html
http://www.marston-home.demon.co.uk/Tony/3tierhardsoft.html
http://www.sans.org/rr/appsec/SQL_injection.php
http://www.sans.org/rr/appsec/SQL_injection.php
http://www.cgisecurity.com/lib/SQLinsertion.htm
http://www.cgisecurity.com/lib/SQLinsertion.htm

[38] J.D. Meier, Alex Mackman, Michael Dunner, and Srinath Vasireddy.
Building secure asp.net applications: Authentication, authoriza-
tion, and secure communication. Online Documentation, nov
2002. http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnnetsec/html/SecNetch12.asp.

[39] Memonix and MrJade. Abusing poor programming techniques in
webserver scripts v 1.0. Web advisory, jul 2002. http://www.
infosecuritymag.com/2002/jul/faster.shtml.

[40] Sun Microsystems. Using prepared statements. Online documen-
tation. http://java.sun.com/docs/books/tutorial/jdbc/basics/
prepared.html.

[41] Timothy M. Mullen. Web vulnerability and sql injection counter-
measures. In Windows Security 2002, New Orleans, USA, feb 2002.
Black Hat. http://www.blackhat.com/presentations/win-usa-02/
mullen-winsec02.ppt.

[42] Aaron C. Newman. Protecting oracle databases. Technical re-
port, Application Security, Inc., 2001. http://www.appsecinc.com/
presentations/Protecting_Oracle_Databases_White_Paper.pdf.

[43] Ross Overstreet. Protecting yourself from sql injection attacks. Web ad-
visory, 2003. http://www.4guysfromrolla.com/webtech/061902-1.
shtml.

[44] Cyrus Peikari and Seth Fogie. Guarding against sql server attacks:
Hacking, cracking, and protection techniques. Web advisory, 2003.
http://www.airscanner.com/pubs/sql.pdf.

[45] Razvan Peteanu. Best practices for secure development, v4.03. White
Paper, oct 2001. http://www.owasp.org/whitepapers/best_prac_
for_sec_dev4.pdf.

[46] The International Common Criteria Project. Common criteria for in-
formation technology security evaluation - part 1: Introduction and
general model, Version 2.1, CCIMB-99-031. Online Documentation,
aug 1999. http://commoncriteria.org/docs/PDF/CCPART1V21.PDF.

[47] The International Common Criteria Project. Common criteria for in-
formation technology security evaluation - part 3: Security assurance
requirements, Version 2.1, CCIMB-99-033. Online Documentation, aug
1999. http://commoncriteria.org/docs/PDF/CCPART3V21.PDF.

[48] The International Common Criteria Project. Common criteria for in-
formation technology security evaluation part 2: Security functional

71

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch12.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch12.asp
http://www.infosecuritymag.com/2002/jul/faster.shtml
http://www.infosecuritymag.com/2002/jul/faster.shtml
http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html
http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html
http://www.blackhat.com/presentations/win-usa-02/mullen-winsec02.ppt
http://www.blackhat.com/presentations/win-usa-02/mullen-winsec02.ppt
http://www.appsecinc.com/presentations/Protecting_Oracle_Databases_White_Paper.pdf
http://www.appsecinc.com/presentations/Protecting_Oracle_Databases_White_Paper.pdf
http://www.4guysfromrolla.com/webtech/061902-1.shtml
http://www.4guysfromrolla.com/webtech/061902-1.shtml
http://www.airscanner.com/pubs/sql.pdf
http://www.owasp.org/whitepapers/best_prac_for_sec_dev4.pdf
http://www.owasp.org/whitepapers/best_prac_for_sec_dev4.pdf
http://commoncriteria.org/docs/PDF/CCPART1V21.PDF
http://commoncriteria.org/docs/PDF/CCPART3V21.PDF

requirements, Version 2.1, CCIMB-99-032. Online Documentation, aug
1999. http://commoncriteria.org/docs/PDF/CCPART2V21.PDF.

[49] The Open Web Application Security Project. A guide to building se-
cure web applications, Version 1.1.1. Online Documentation, sep 2002.
http://www.owasp.org/.

[50] The Open Web Application Security Project. The ten most critical web
application security vulnerabilities, Version 1. Online Documentation,
jan 2003. http://www.owasp.org/.

[51] Rain Forest Puppy (pseudonym). A quick look at web vul-
nerabilities and a small demo of sql tampering. In Hack-
Expo 2002, Melbourne/Sydney, Australia, mar 2002. Wire-
trip. http://www.wiretrip.net/rfp/talks/hackexpo-2002/
hackexpo-sql-web/slide1.html.

[52] Yvel (pseudonym). Sql injection attack! Web advisory, sep 2002.
http://www.roymoon.com/Articles.aspx?ArtNum=66.

[53] William A. Qualls. Exploit in action: A beginners view of inci-
dent handling for sql injection techniques. Technical report, SANS
Institute, 2003. http://www.giac.org/practical/GCIH/William_
Qualls_GCIH.pdf.

[54] Jason Rafail. Cross-site scripting vulnerabilities. Technical report,
Carnegie Mellon Software Engineering Institute, 2001. http://www.
cert.org/archive/pdf/cross_site_scripting.pdf.

[55] Mike Robertson. Understanding and preventing sql injection at-
tacks. Web advisory, 2002. http://www.silksoft.co.za/data/
sqlinjectionattack.htm.

[56] W3 Schools. W3 schools. Online documentation. http://www.
w3schools.org/.

[57] SearchDatabase. Sql. Online documentation, mar 2003.
http://searchdatabase.techtarget.com/sDefinition/0,,sid13_
gci214230,00.html.

[58] Edward Skoudis. Cracker tools and techniques. Web advisory, jul 2002.
http://www.infosecuritymag.com/2002/jul/faster.shtml.

[59] Ian Sommerville. Software Engineering. Addison-Welsey, 2001.

[60] Fons Sonnemans. Sql-strings considered harmful. Web advisory, mar
2003. http://www.reflectionit.nl/SqlInsert.aspx.

72

http://commoncriteria.org/docs/PDF/CCPART2V21.PDF
http://www.owasp.org/
http://www.owasp.org/
http://www.wiretrip.net/rfp/talks/hackexpo-2002/hackexpo-sql-web/slide1.html
http://www.wiretrip.net/rfp/talks/hackexpo-2002/hackexpo-sql-web/slide1.html
http://www.roymoon.com/Articles.aspx?ArtNum=66
http://www.giac.org/practical/GCIH/William_Qualls_GCIH.pdf
http://www.giac.org/practical/GCIH/William_Qualls_GCIH.pdf
http://www.cert.org/archive/pdf/cross_site_scripting.pdf
http://www.cert.org/archive/pdf/cross_site_scripting.pdf
http://www.silksoft.co.za/data/sqlinjectionattack.htm
http://www.silksoft.co.za/data/sqlinjectionattack.htm
http://www.w3schools.org/
http://www.w3schools.org/
http://searchdatabase.techtarget.com/sDefinition/0,,sid13_gci214230,00.html
http://searchdatabase.techtarget.com/sDefinition/0,,sid13_gci214230,00.html
http://www.infosecuritymag.com/2002/jul/faster.shtml
http://www.reflectionit.nl/SqlInsert.aspx

[61] Mark Spenik and Orryn Sledge. Microsoft sql server 2000 error mes-
sages. Web advisory, 2002. http://www.developer.com/db/article.
php/10920_724711_1.

[62] Kevin Spett. Security at the next level - are your web applica-
tions vulnerable? Technical report, SPI Dynamics, 2002. http:
//www.spidynamics.com/whitepapers/webappwhitepaper.pdf.

[63] Kevin Spett. Sql injection - are your web applications vulnerable? Tech-
nical report, SPI Dynamics, 2002. http://www.spidynamics.com/
papers/SQLInjectionWhitePaper.pdf.

[64] William Stallings. Network Security Essentials: Applications and Stan-
dards. Prentice-Hall, Inc., 1999.

[65] Ron Talmage. Securing your sql server. White paper, dec 2002. http:
//www.devx.com/codemag/Article/10290/0/page/1.

[66] W3C. Hypertext markup language (html) home page. Online docu-
mentation. http://www.w3.org/MarkUp/.

[67] James Woodger. General web architecture. Web advisory, jan 2002.
http://www.woodger.ca/archweb.htm.

[68] Joseph Yoder and Jeffrey Barcalow. Architectural patterns for enabling
application security. In PLoP 97, Monticello, Illinois, USA, sep 1997.
CiteSeer. http://citeseer.nj.nec.com/yoder98architectural.
html.

73

http://www.developer.com/db/article.php/10920_724711_1
http://www.developer.com/db/article.php/10920_724711_1
http://www.spidynamics.com/whitepapers/webappwhitepaper.pdf
http://www.spidynamics.com/whitepapers/webappwhitepaper.pdf
http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf
http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf
http://www.devx.com/codemag/Article/10290/0/page/1
http://www.devx.com/codemag/Article/10290/0/page/1
http://www.w3.org/MarkUp/
http://www.woodger.ca/archweb.htm
http://citeseer.nj.nec.com/yoder98architectural.html
http://citeseer.nj.nec.com/yoder98architectural.html

A Glossary

We note that this is not a tutorial of concepts, but only a consistent set of
definitions (even if they are not universally accepted) that we use throughout
this thesis.

Access Control “. . . the ability to limit and control the access to host
systems and applications via communications links. To achieve this
control, each entity trying to gain access must first be identified, or
authenticated, so that access rights can be tailored to the individ-
ual.” [64]

Authentication “A mechanism that determines whether a user is, who he
or she claims to be.” [10]

Authorization “The granting of a right or a privilege, which enables a
subject to have legitimate access to a system’s object”. [10]

Availability “The property that a procedure’s services are accessible when
needed and without undue delay.” [18]

Buffer Overrun “A buffer overrun is when a program allocates a block of
memory of a certain length and then tries to stuff too much data into
the buffer, with the extra overflowing and overwriting possibly critical
information crucial to the normal execution of the program.” [30]

Confidentiality “Prevention of unauthorized disclosure of information.”
[18]

Cross-site scripting “malicious script [that] runs with the privileges of a
legitimate script originating from the legitimate web server.” [54]

Database Server A server on which a DBMS runs. [10]

Decryption The process of decoding encrypted data.

DBMS “A software system that enables users to define, create and main-
tain the database and provides controlled access to this database.” [10]

Encryption “The encoding of the data by a special algorithm that renders
the data unreadable by any program without the decryption key.” [10]

Extranet “An intranet that is partially accessible to authorized outsiders.”
[18]

Firewall “. . . any security system protecting the boundary of an internal
network.” [18]

74

HTML “HTML is the lingua franca for publishing hypertext on the World
Wide Web. It is a non-proprietary format based upon SGML. . . ” [66]

HTTP “The Hypertext Transfer Protocol (HTTP) is an application-level
protocol with the lightness and speed necessary for distributed, col-
laborative, hypermedia information systems. HTTP has been in use
by the World-Wide Web global information initiative since 1990” [19]

HTTPS “The secure hypertext transfer protocol (HTTPS) is a communi-
cations protocol designed to transfer encrypted information between
computers over the World Wide Web. HTTPS is http using a Secure
Socket Layer (SSL). A secure socket layer is an encryption protocol
invoked on a Web server that uses HTTPS.”[11]

Integrity “Prevention of unauthorised modification of information.” [18]

Intranet “A Web site or group of sites belonging to an organization, ac-
cessible only by the members of the organization.” [18]

OWASP “The Open Web Application Security Project (or OWASP–pro-
nounced OH’ WASP) was started in September of 2001. [. . .] OWASP
is an open source reference point for system architects, developers, ven-
dors, consumers and security professionals involved in Designing, De-
veloping, Deploying and Testing the security of web applications and
Web Services. In short, the Open Web Application Security Project
aims to help everyone and anyone build more secure web applications
and Web Services.” [49]

Prepared Statement While prepared statements can be implemented in
various ways, we prefer the concept as it is defined and used by Sun
Microsystems [40]. Using Java technologies, a prepared statement is
an object that is given an SQL statement when it is created. In most
cases, this SQL statement will be sent to the RDBMS right away, where
it will be compiled. As a result, the prepared statement object contains
not just an SQL statement, but an SQL statement that has been pre-
compiled. This means that when the prepared statement is executed,
the RDBMS can just run the prepared statement’s SQL statement
without having to compile it first. According to Sun Microsystems,
the main advantages relate to performance factors. However, we have
found that for prepared statements that require arguments, the pa-
rameters sent will be considered illegal if they contain SQL keywords.
Therefore, prepared statements are considered more secure than dy-
namic SQL.

RDBMS An RDBMS which supports the relational model. [10]

75

SQL SQL (Structured Query Language) is a standard interactive and pro-
gramming language for getting information from and updating a data-
base. Although SQL is both an ANSI and an ISO standard, many
database products support SQL with proprietary extensions to the
standard language. Queries take the form of a command language
that lets you select, insert, update, find out the location of data, and
so forth. [57]

SQL Injection (also named Direct SQL Command Injection, Query Poi-
soning, Malformed SQL, SQL Tampering, SQL Insertion and One-Way
SQL Hacking) A technique that enables malicious users to exploit web
applications and bypass control mechanisms in order to gain access to
and manipulate information assets outside their privileges [12].

Threat “Any situation or event, whether intentional or unintentional, that
will adversely affect a system and consequently an organization.” [10]

URL “A string of alphanumeric characters that represents the location or
address of a resource on the Internet and how that resource should be
accessed.” [18]

Vulnerability “A weakness in computer-based system that may be ex-
ploited to cause loss or harm.” [59]

Web Application Web-based business applications that use a relational
database for persistent storage of data [12].

Web Services “. . . a collection of functions that are packaged as a single
entity and published to the network for use by other programs. Web
services are building blocks for creating open distributed systems, and
allow companies and individuals to quickly and cheaply make their
digital assets available worldwide.” [49]

76

B Internet Links

In this section we list some Internet links which discuss SQL injection or
some aspect of it.

http://www.4guysfromrolla.com/ http://msdn.microsoft.com/
http://www.adopenstatic.com/ http://www.networkmagazine.com/
http://www.advosys.ca/ http://www.nextgenss.com/
http://www.anticrack.de/ http://newdata.box.sk/
http://www.acsac.org/ http://www.oracle.com/
http://www.airsdcanner.com/ http://www.oreillynet.com/
http://www.appsecinc.com/ http://www.owasp.org/
http://www.aspnetpro.com/ http://www.pentest-limited.com/
http://www.atstake.com/ http://www.php.net/
http://www.baselinemag.com/ http://www.qb0x.net/
http://www.blackhat.com/ http://www.reflectionit.nl/
http://www.cert.org/ http://www.sans.org/
http://www.cgisecurity.com/ http://www.secunia.com/
http://www.devarticles.com/ http://www.security-patterns.de/
http://www.devx.com/ http://www.securityfocus.com/
http://www.digitaloffense.net/ http://www.securiteam.com/
http://www.eckes.com/ http://www.silksoft.co.za/
http://www.extropia.com/ http://www.sitepoint.com/
http://www.giac.org/ http://www.software-factory.ch/
http://www.hillside.net/ http://www.sourceforge.net/projects/wpoison/
http://www.infosecuritymag.com/ http://www.spidynamics.com/
http://www.itworld.com/ http://www.sqlsecurity.com/
http://www.lwn.net/ http://www.webmasterbase.com/
http://www.macromedia.com/ http://www.whitehatsec.com/

77

http://www.4guysfromrolla.com/
http://msdn.microsoft.com/
http://www.adopenstatic.com/
http://www.networkmagazine.com/
http://www.advosys.ca/
http://www.nextgenss.com/
http://www.anticrack.de/
http://newdata.box.sk/
http://www.acsac.org/
http://www.oracle.com/
http://www.airsdcanner.com/
http://www.oreillynet.com/
http://www.appsecinc.com/
http://www.owasp.org/
http://www.aspnetpro.com/
http://www.pentest-limited.com/
http://www.atstake.com/
http://www.php.net/
http://www.baselinemag.com/
http://www.qb0x.net/
http://www.blackhat.com/
http://www.reflectionit.nl/
http://www.cert.org/
http://www.sans.org/
http://www.cgisecurity.com/
http://www.secunia.com/
http://www.devarticles.com/
http://www.security-patterns.de/
http://www.devx.com/
http://www.securityfocus.com/
http://www.digitaloffense.net/
http://www.securiteam.com/
http://www.eckes.com/
http://www.silksoft.co.za/
http://www.extropia.com/
http://www.sitepoint.com/
http://www.giac.org/
http://www.software-factory.ch/
http://www.hillside.net/
http://www.sourceforge.net/projects/wpoison/
http://www.infosecuritymag.com/
http://www.spidynamics.com/
http://www.itworld.com/
http://www.sqlsecurity.com/
http://www.lwn.net/
http://www.webmasterbase.com/
http://www.macromedia.com/
http://www.whitehatsec.com/

	Introduction
	Background
	Corporations and Web Applications
	Security
	Web Applications and Security
	Web Applications and Data Storage
	SQL Injection

	Problem
	Purpose
	Scope
	Methodology
	Method
	Method for Data Collection
	Method Criticism

	Goals and Expected Results
	Related Work
	Artifacts
	Outline

	Web Applications
	Domain
	Web Services
	Business Web Applications

	Architecture
	Client-Server
	The Client-Server Architecture and Layers
	The Client-Server Architecture and Tiers
	General Web Application Architecture

	Components
	Component Types
	A General Business Web Application Model

	Communication
	Information
	Content
	Protocol
	URL Encoding

	Assets

	RDBMS and SQL
	RDBMS
	SQL
	DML
	DDL

	Query Techniques
	Dynamic SQL
	Static SQL

	Error Messages
	Security
	Computer-Based Controls
	Non-Computer-Based Controls

	Computer Security
	Assets
	Services
	Threats
	Mechanisms
	Vulnerabilities
	Relation Between Security Components

	SQL Injection
	Introduction
	Scope
	Basics
	Attack Procedure

	Nomenclature
	Security Services
	Means
	Attack Methods
	Prerequisites
	Vulnerabilities
	Countermeasures

	SQL Injection Security Model
	SQL Injection Attack Examples

	Model Analysis
	Aspects of the Model
	Static vs. Dynamic SQL
	RDBMS Support
	Input Validation

	How to use the Model
	Aspects of Existing Prevention Techniques
	Countermeasure Comparison

	Epilogue
	Discussion
	Future Work
	Concluding Remarks

	Glossary
	Internet Links

