
Cross-Site Scripting Prevention with
Dynamic Data Tainting and Static Analysis

Philipp Vogt§, Florian Nentwich§, Nenad Jovanovic§,
Engin Kirda§, Christopher Kruegel§, and Giovanni Vigna‡

§ Secure Systems Lab
Technical University Vienna

{pvogt,fnentwich,enji,ek,chris}@seclab.tuwien.ac.at

‡University of California, Santa Barbara
vigna@cs.ucsb.edu

Abstract

Cross-site scripting (XSS) is an attack against web ap-
plications in which scripting code is injected into the output
of an application that is then sent to a user’s web browser.
In the browser, this scripting code is executed and used to
transfer sensitive data to a third party (i.e., the attacker).
Currently, most approaches attempt to prevent XSS on the
server side by inspecting and modifying the data that is ex-
changed between the web application and the user. Un-
fortunately, it is often the case that vulnerable applications
are not fixed for a considerable amount of time, leaving the
users vulnerable to attacks. The solution presented in this
paper stops XSS attacks on the client side by tracking the
flow of sensitive information inside the web browser. If sen-
sitive information is about to be transferred to a third party,
the user can decide if this should be permitted or not. As
a result, the user has an additional protection layer when
surfing the web, without solely depending on the security of
the web application.

1 Introduction

Nowadays, many web sites make extensive use of client-
side scripts (mostly written in JavaScript) to enhance user
experience. Unfortunately, this trend has also increased the
popularity and frequency of cross-site scripting (XSS) at-
tacks. When a cross-site scripting vulnerability is present in
a web application, an attacker can inject scripting code into
the pages generated by the web application. Such situations
can arise, for example, due to lacking security awareness

on part of the developers, or due to programming mistakes
induced by financial and time constraints. This allows an
attacker to circumvent the same-origin policy [19], which
states that scripts loaded from a certain domain cannot ac-
cess data belonging to any other domain.

In XSS attacks, the same-origin policy is circumvented
because when the victim’s browser receives the generated
output page, the maliciously-injected code is executed in
the context of the site hosting the vulnerable web applica-
tion, and, therefore, it has access to sensitive data stored by
that site in the victim’s browser (e.g., using cookies). Usu-
ally, the attack code transfers the sensitive information to a
server under the attacker’s control. This information allows
the attacker to impersonate the victim or hijack the victim’s
current session.

There are two general methods for injecting malicious
code into the web page that is displayed to the user. In
the first method, called stored XSS, the attacker persistently
stores the malicious code in a resource managed by the web
application, such as a database. The actual attack is carried
out at a later time, when the victim requests a dynamic page
that is constructed from the contents of this resource. As an
example, consider a web-based bulletin board system (e.g.,
phpBB [25]) where people can post messages that are dis-
played to all visitors of the bulletin board. Let us assume
further that the application does not remove script content
from posted messages. In this case, the attacker can craft
a message similar to the one in Figure 1. This message
contains the malicious JavaScript code, which the bulletin
board stores in its database. A visiting user who reads this
message retrieves the scripting code as part of the message.
The user’s browser then executes the script, which, in turn,

Look at this picture!

<script>
document.images[0].src = "http://evilserver/image.jpg?

stolencookie=" + document.cookie;
</script>

Figure 1. Transfer of a cookie.

sends the user’s cookie to a server under the attacker’s con-
trol.
In the second method, called reflected XSS, the attack

script is not persistently stored, but, instead, it is immedi-
ately “reflected” back to the user. For instance, consider
a search form that includes the search query into the page
with the results, but without filtering the query for scripting
code. This vulnerability can be exploited, for example, by
sending to the victim an email with a specially-crafted link
that points to the search form and that contains the mali-
cious JavaScript code. By tricking the victim into clicking
this link, the search form is submitted with the JavaScript
code as the query string, and the attack script is immedi-
ately sent back (reflected) to the victim, as part of the web
page with the results.
The optimal approach to prevent XSS attacks would be

to eliminate the vulnerabilities in the affected web applica-
tions. To this end, a web application must properly vali-
date all input, and in particular, remove malicious scripts.
The problem is that many service providers do not fix their
web applications in a timely way. Hence, a promising ap-
proach for protecting users against XSS attacks is to deploy
the necessary security mechanisms on the client side.
The solution proposed in this paper uses dynamic data

tainting. In contrast to traditional, tainting-based ap-
proaches on the server side, we taint sensitive information
on the client side. The goal is to ensure that a JavaScript
program can send sensitive information only to the site from
which it was loaded. To this end, the information flow of
sensitive data is tracked inside the JavaScript engine of the
browser. Whenever an attempt to relay such information
to a third party (i.e., the adversary) is detected, the user is
warned and given the possibility to stop the transfer.
Unfortunately, it is not possible to detect all information

flows dynamically [27]. This is a problem, because the ad-
versary has complete freedom to craft his attack code, and,
therefore, he could leverage information flows that are not
covered by dynamic analysis to successfully launch XSS
attacks. To address this limitation, we complement our dy-
namic mechanism with an additional static analysis compo-
nent. This static analysis component is invoked on-demand
and covers those cases that cannot be decided dynamically.
Using a combination of static and dynamic analysis, we can
combine the advantages of both approaches. The dynamic
analysis allows us to precisely track sensitive information
with low runtime overhead. By switching to static analysis

when necessary, our system can provide stronger security in
the face of malevolent attack code.
To demonstrate that our approach is capable of solv-

ing real-world problems, we integrated a prototype imple-
mentation of our techniques into the popular Firefox web
browser (which turned out to be a considerable engineering
effort). By further equipping Firefox with a web crawler
capable of simulating user actions, we were able to conduct
a large-scale and fully automatic evaluation of our system
on more than one million web pages. The empirical results
demonstrate that our approach provides reliable protection
against XSS attacks in real-world usage, with a low false
positive rate.
To summarize, the contributions of this paper are as follows:

• A dynamic taint analysis and a complementary static
analysis that prevent XSS attacks by monitoring the
flow of sensitive information in the web browser.

• The integration of the analyses into the popular Firefox
web browser.

• The development of a Firefox-based web crawler ca-
pable of simulating user actions. This allowed us to
perform a large-scale empirical validation of our tech-
niques based on the automatic browsing of more than
one million web pages.

The rest of this paper is structured as follows. In Sec-
tion 2, we present related work on detecting and preventing
XSS attacks. In Section 3, we introduce our dynamic anal-
ysis technique. Then, in Section 4, we extend our approach
using static techniques. Sections 5 and 6 discuss how in-
formation could be leaked to an adversary and some imple-
mentation issues, respectively. Section 7 presents the eval-
uation of our prototype, and, finally, Section 8 concludes.

2 Related Work

There are two main criteria that can be used for dis-
tinguishing between XSS protection techniques: The point
of deployment (client-side or server-side), and the analysis
paradigm in use (dynamic or static).

Server-side protection. A well-known, dynamic server-
side protection mechanism is Perl’s taint mode [3]. In this
case, the flow of tainted values is tracked within the Perl
interpreter. More precisely, input from untrusted sources
is marked as being potentially malicious, and propagated
through the program. Any attempt to use tainted data di-
rectly or indirectly in a critical command that invokes a sub-
shell, modifies files, directories, or processes will be aborted
with an error. The developer is given means to test the taint

status of data, as well as the ability to sanitize (i.e., un-
taint) the data where this seems appropriate. Analogously,
interpreter-based approaches for PHP are presented in [23]
and [26]. Dynamic taint propagation for the Java virtual
machine is employed in [10].
A dynamic taint-tracking scheme for C programs uti-

lizing source-to-source transformation is described in [30].
Here, the scope of protection ranges from classical buffer
overflow and format string vulnerabilities to the detection
of XSS and other types of injection attacks. Their method
is also applicable to scripting languages implemented in C,
such as PHP and Bash. In addition, there also exist dynamic
tainting approaches that do not deal with XSS attacks, but
focus on the detection of attacks that attempt to overwrite
sensitive program data (such as return addresses or function
pointers). For instance, in [22], binaries are rewritten at run-
time to allow for taint propagation. Hardware approaches
that dynamically track the propagation of taint values at the
architectural level are presented in [6] and [28].
In [15], an anomaly-based intrusion detection system is

presented that can detect XSS attacks. To this end, the sys-
tem analyzes web server logs and automatically retrieves
the profiles (length and structure) of typical parameters of
any protected web application. These profiles are then com-
pared to incoming user requests, such that requests with
atypical parameter profiles can be classified as potential at-
tacks.
Apart from the dynamic techniques mentioned so far,

static analysis can be used to detect XSS vulnerabilities on
the server side. In [16], the authors propose a static anal-
ysis approach for web applications in order to detect XSS
vulnerabilities. The analysis results are then cross-checked
with dynamic techniques to eliminate false warnings. A
technique based on data flow analysis for detecting XSS and
similar vulnerabilities (such as SQL injection or command
injection) is presented in [13].

Client-side protection. There exist a few approaches
that, similarly to our solution, try to solve the problem on
the client side. In [12], the authors implemented a proxy
that can be used to protect a user while surfing the web.
To this end, the proxy analyzes the HTTP traffic exchanged
between the user’s browser and the contacted web server.
First, client requests are scanned for special HTML char-
acters (such as the "<" character). Then, if the applica-
tion’s response reflects these presumably-malicious request
parameters back to the user, the web site is considered to
be vulnerable to XSS. As a result, these special characters
are encoded before the response is delivered to the user’s
browser, which disables the attempted attack. A limitation
of this approach is that it is focused on reflected XSS at-
tacks, and does not permit the detection and prevention of
stored XSS attacks.

The application-level firewall described in [14] analyzes
browsed HTML pages for hyperlinks that might lead to the
leakage of sensitive data. Based on this analysis, a set of
connection rules is generated on-the-fly that prevents sus-
picious requests. The main idea behind this technique is
that sensitive information can be transmitted either by a
single link that is constructed dynamically inside the user’s
browser, or by several static links.
In [11], the Mozilla web browser is equipped with an

auditing system that monitors the execution of JavaScript
code. Using different intrusion detection techniques, the
observed operations are compared to high-level policies to
detect malicious behavior.
The main difference between our solution and other

client-based approaches is that they use various heuristics
for XSS detection, whereas we perform an in-depth and pre-
cise analysis of how sensitive values are propagated inside
the user’s browser. Using a combination of dynamic and
static analyses, we can efficiently identify implicit informa-
tion flows that purely dynamic approaches cannot identify.

3 Dynamic Data Tainting

In a cross-site scripting attack, the code that is injected
into the output of the web application is under the attacker’s
control. This code is executed in the user’s web browser,
where it collects sensitive information that is then sent to
the attacker. Because the code runs in the context of the
vulnerable web site, it is not distinguishable from normal
application behavior.
The goal of our protection approach is to prevent that

sensitive data is sent to a third party (the adversary) with-
out the user’s consent. To this end, we designed a mech-
anism that can keep track of how sensitive data is used in
the browser. Our mechanism is based on the concept of dy-
namic data tainting, in which sensitive data is first marked
(or tainted), and then, when this data is accessed by scripts
running in the web browser, its use is dynamically tracked
by our system. When tainted data is about to be transferred
to a third party, different kinds of actions can be taken. Ex-
amples are logging, preventing the transfer, or stopping the
program with an error. Note that it is sufficient to model
the taint value associated with a piece of data as a simple
boolean flag. In particular, it is not necessary to explicitly
store the domain that this data originated from (to be able to
distinguish the source domain from a third party domain),
as this information can be retrieved from the browser.
Our taint analysis is capable of tracking data dependen-

cies. That is, when a tainted value is assigned to another
variable, this variable becomes tainted as well. Also, when
any operand of an arithmetic or logic operation is tainted,
the result becomes tainted. Moreover, our solution is capa-
ble of handling direct control dependencies. That is, when-

Object Tainted properties

Document cookie, domain, forms, lastModified, links, referrer, title,
URL

Form action
Any form input element checked, defaultChecked, defaultValue, name,

selectedIndex, toString, value
History current, next, previous, toString
Select option defaultSelected, selected, text, value
Location and Link hash, host, hostname, href, pathname, port, protocol,

search, toString
Window defaultStatus, status

Table 1. Initial sources of taint values.

1: var cookie = document.cookie;
2: // "cookie" is now tainted
3: var dut = "";
4: // copy cookie content to dut
5: for (i=0; i < cookie.length; i++) {
6: switch (cookie[i]) {
7: case ’a’: dut += ’a’;break;
8: case ’b’: dut += ’b’;break;
9: ...
10: }
11: }
12: // dut is now copy of cookie
13: document.images[0].src =

"http://badsite/cookie?" + dut;

Figure 2. Attack using direct control depen-
dency.

ever the execution of an operation depends on the value of
a tainted variable (e.g., if an operation is guarded by an if-
branch that tests a tainted variable), the result of this opera-
tion is tainted. Figure 2 provides an example to illustrate the
importance of direct control dependencies. In this example,
the attacker copies the cookie from the variable cookie
to the variable dut using a for-loop and a switch statement
for any character in cookie. If only data dependencies
were covered, the dut variable would not be tainted af-
ter the loop. This is because the character literals assigned
to it in the switch statement are not tainted. When direct
control dependencies are considered, however, everything
in the scope of the switch statement is tainted (because a
tainted value is tested in the head of the switch statement).
In addition to the tracking of taint information inside the

JavaScript engine, tainted data stored in and retrieved from
the document object model (DOM) tree [29] of the HTML
page has to retain its taint status. This is required to prevent
laundering attempts in which an attacker temporarily stores
tainted data in a DOM tree node to clear its taint status.
The next sections discuss the information flow in a typ-

ical script execution. We will first show what kind of in-
formation is considered sensitive in Section 3.1. Then, Sec-

tion 3.2 presents how tainted data is propagated by our sys-
tem when a script is run.

3.1 Sensitive Data Sources

For our system, we have to identify those data sources
that are considered sensitive. The reason is that this data
must be initially tainted so that its use by scripting code can
be appropriately tracked. A data source is considered sen-
sitive when it holds information that could be abused by an
adversary to launch attacks or to learn information about a
user (e.g., cookies or the URL of the visited web page). A
list of tainted sources used by our system is provided in Ta-
ble 1. Since this list was provided by Netscape [21], we
believe it to be fairly complete. In case that additional sen-
sitive data sources are discovered, our system can be easily
extended to handle these as well.
Sensitive sources are directly tainted in the web browser.

Thus, whenever a sensitive data element is accessed by a
JavaScript program, we have to ensure that the result is re-
garded as tainted by the JavaScript engine as well. Figure 4
shows the interaction between the JavaScript engine and the
browser when a script is executed. In this example, the
HTML page contains some embedded JavaScript code (1)
that accesses the cookie of the document (which is a sensi-
tive source). The script is parsed and compiled into a byte-
code program (2) that is then executed by the JavaScript en-
gine. When the engine executes the statement that attempts
to obtain the cookie property from the document object
(3), it generates a call to the implementation of the docu-
ment class in the browser (4). Possible parameters of the
call are converted from values understood by the JavaScript
engine to those defined in the browser (5). Then, the cor-
responding method in the browser, which implements the
document.cookiemethod, is called (6). In this method,
the access to a sensitive source is recognized and the value
is tainted appropriately (7). This value is then converted
into a value with a type used by the JavaScript engine (8).

This conversion has to retain the taint status of the value.
Thus, the result of the operation that obtains the cookie
property (variable x) is tainted (9).

3.2 Taint Propagation

JavaScript programs that are part of a web page are
parsed and compiled into an internal bytecode representa-
tion. These bytecode instructions are then interpreted by the
JavaScript engine. To track the use of sensitive information
by JavaScript programs, we have extended the JavaScript
engine. More precisely, we have extended the semantics of
the bytecode instructions so that taint information is cor-
rectly propagated. The JavaScript bytecode instructions can
be divided into the following broad classes of operations:

• assignments;
• arithmetic and logic operations (+, -, &, etc.);
• control structures and loops (if, while, switch,
for in);

• function calls and eval.

When an instruction is executed, some (or all) of its
operands could be tainted. Thus, for each instruction, there
has to be a rule that defines under which circumstances the
result of an operation has to be tainted (or what other kind
of information is affected by the tainted data).

3.2.1 Assignments

In an assignment operation, the value of the left-hand side
is set. If the right-hand side of the assignment is tainted,
then the target on the left-hand side is also tainted. The
JavaScript engine has different instructions for assignment
to single variables, function variables, function arguments,
array elements, and object properties.
In some cases, the variable that is assigned a tainted

value is not the only object that must be tainted. For ex-
ample, if an element of an array is tainted, then the whole
array object needs to be tainted as well. This is necessary to
ensure that functions and methods that operate on the array
as a whole, such as arr.length, return a tainted value.
Consider the example in Figure 3. On Line 1, a new array
is created with an initial length of 0. Only if the first char-
acter of the cookie is an ’a’, a value is assigned to the first
element of the array on Line 3. In this example, the length
of the array on Line 5 is 1 if the first character of the cookie
is an ’a’, otherwise it is still 0. On Line 5, a new variable
is set to ’a’, depending on the length of the array. When
extending this method to cover all possible characters (e.g.,
’a’ - ’z’, ’A’ - ’Z’, ’0’ - ’9’), the attacker could try to copy

1: var arr = []; // arr.length = 0
2: if (document.cookie[0] == ’a’) {
3: arr[0] = 1;
4: }
5: if (arr.length == 1) { y = ’a’; }

Figure 3. Array element assignment.

the first character of the cookie to a new value, thereby at-
tempting to bypass the tainting scheme. However, in our
approach, we do not only taint the first element on Line 3,
but also the array object itself. As a result, the variable y
on Line 5 is tainted. Likewise, if a property of an object
is set to a tainted value, then the whole object needs to be
tainted. The reason is that the property could be new, and in
this case, the number of properties has changed. This could
allow an attacker to leak information in a similar fashion.

3.2.2 Arithmetic and Logic Operations

Operations in JavaScript can have one (e.g., unary -) or
more operands (e.g., multiplication *). JavaScript, similar
to Java bytecode, is a stack-based language. That is, in-
structions that perform arithmetic or logic operations first
pop the appropriate number of operands from the stack and
then push back the result. The result is tainted if one of the
used operands is tainted.

3.2.3 Control Structures and Loops

Control structures and loops are used to manipulate the ex-
ecution flow of a program and to repeat certain sequences
of instructions (e.g., if constructs, while loops, and
try-catch-finally blocks). If the condition of a con-
trol structure tests a tainted value, a tainted scope is gener-
ated that covers the whole control structure. The results
of all operations and assignments in the scope are tainted.
Note that introducing such a scope does not immediately
taint all contained variables. Instead, a variable is dynami-
cally tainted only when its value is modified inside a scope
during the actual execution of the program. This is used
to correctly handle direct control dependencies and prevent
attempts of laundering tainted values by copying them to
untainted values, as illustrated in Figure 2. In this example,
a tainted value (cookie.length) is used in the termina-
tion condition of the for-loop on Line 4. Thus, a scope
from Line 4 to Line 10 is generated. An additional scope is
generated from Line 5 to 9, because the switch-condition
is tainted. When processing operations within a tainted
scope, the results of all operations are tainted, regardless
of the taint status of any involved operands. Therefore, ap-
pending a character to the dut variable (e.g., on Line 6 in
Figure 2) taints the dut variable. Note that this would not
be the case if only data dependencies were considered.

Figure 4. A JavaScript program accesses a sensitive source.

If-else statements generate scopes for both branches
when the condition is tainted. In do-while loops, the
scope is not generated until the tainted condition is tested.
As a result, the first time the block is executed, no scope is
generated. If the tested condition is tainted, a new tainted
scope covering the repeated block is generated, which re-
mains until the loop is left. In the try-catch-finally
statement, a scope is generated for the catch-block when
the thrown exception object is tainted. The remaining con-
trol flow statements are handled analogously.

3.2.4 Function Calls and eval

Functions are tainted if they are defined in a tainted scope.
For example, function x defined on Line 2 of Figure 5 is
tainted, since a tainted scope has been created from Line 1
to 3 due to the tainted condition on Line 1. Everything
that is done within or returned by a tainted function is
also tainted. When called with tainted actual parameters,
the corresponding formal parameters of the function are
tainted. On Line 7, the function func is called with a
tainted actual parameter, which results in a tainted formal
parameter (par) on Line 5. This tainted parameter is re-
turned, and, because of this, the result of func on Line 7
is tainted as well. Lines 9 and 11 in Figure 5 show that
arguments.length is tainted if one of the arguments
is tainted. The second parameter on Line 11 is tainted, and
therefore, the returned value on Line 9 is tainted, which re-
sults in a tainted variable x on Line 11.
The eval function is special because its argument is

treated as a JavaScript program and executed. If eval is
called in a tainted scope or if its parameter is tainted, a scope

1: if (document.cookie[0] == ’a’) {
2: x = function () { return ’a’; };
3: // x is a tainted function
4: }
5: function func (par) { return par; }
6: // call with a tainted parameter:
7: y = func(document.cookie[0]);
8: function count() {
9: return arguments.length - 1;

10: }
11: x = count(0, document.cookie[0]);

Figure 5. Function tainting.

1: document.getElementById("testtag").innerHTML =
document.cookie;

2: var dut = document.getElementById("testtag").innerHTML;
3: // dut is tainted

Figure 6. DOM tree example.

around the executed program is generated, and we conser-
vatively taint every operation in this program.

3.2.5 Document Object Model (DOM) Tree

An attacker could attempt to remove the taint status of a data
element by temporarily storing it in a node of the DOM tree
and retrieving it later (see Figure 6). To prevent laundering
of data through the DOM tree, taint information must not
get lost when leaving the JavaScript engine. To this end,
the object that implements a DOM node is tainted every
time a JavaScript program stores a tainted value into this
node. When the node is accessed later, the returned value is
tainted.

4 Static Data Tainting

The main strength of the dynamic approach described
so far is that it is capable of tracking the flow of sensitive
values through data dependencies in an efficient and pre-
cise way. Unfortunately, as discussed in [7] and [27], dy-
namic techniques cannot be used for the detection of all
kinds of control dependencies. For example, consider the
attack script shown in Figure 7. This script exploits an indi-
rect control dependency. On Lines 1 and 2, the variables x
and y are both initialized to false. On Line 3, the attacker
tests the user’s cookie for a specific value. First, let us as-
sume that the attacker was lucky, and that the user’s cookie
indeed holds the tested value abc. In this case, Line 4 is
executed, setting x to true. At the same time, our modi-
fied JavaScript engine taints x. Variable y keeps its false
value, since the assignment on Line 6 is not executed. Also,
y does not get tainted: Remember from Section 3.2.3 that
even though the generated scope covers both branches of
the if construct (Lines 3 to 7), dynamic tainting occurs
only along the branch that is actually executed. Since y has
not been modified, this means further that the condition on
y (Line 11) evaluates to true. As y is not tainted, no tainted
scope is generated for this if construct, and the attacker is
free to issue a request at this point in the program, carrying
the information that the cookie holds the exact value abc.
Analogously, in case of the more likely event that the at-
tacker does not guess the exact cookie value, he can at least
send a request indicating that the cookie does not hold this
value, again leaking sensitive information. A more sophisti-
cated script for cookie stealing would, for instance, employ
a binary search on the cookie value instead of direct equal-
ity tests. The reason why this attack is able to circumvent
dynamic protection techniques is that there exists a correla-
tion between x and y that is encoded into the control flow.
If some condition on the cookie value holds, x is set to true,
while y remains false, whereas otherwise, x is false and y
is true. In either case, only one of these variables is tainted
dynamically, and hence, the other, untainted variable can
be used to leak information. To cover both direct and in-
direct control dependencies, all possible program paths in
a scope need to be examined. Unfortunately, this cannot be
provided by purely dynamicmethods. Therefore, to guaran-
tee that no information can be leaked using indirect control
dependencies (that is, to provide a noninterference [8] guar-
antee), static analysis is necessary. The static analysis must
ensure that all variables that could receive a new value on
any program path within the tainted scope are tainted. This
is necessary because “ any variable or data structure must be
assumed to contain confidential information if it might have
been modified within [a tainted scope]” [27]. Using both
static and dynamic analysis, we can combine the strengths

1: x = false;
2: y = false;
3: if (document.cookie == "abc") {
4: x = true;
5: } else {
6: y = true;
7: }
8: if (x == false) {
9: // Line 6 was executed, and x is not tainted

10: }
11: if (y == false) {
12: // Line 4 was executed, and y is not tainted
13: }

Figure 7. Attack using indirect control depen-
dency.

of both techniques to achieve full protection against XSS
attacks.

4.1 Linear Static Taint Analysis

The basic idea of our static analysis is the following: For
every branch in the control flow that depends on a tainted
value (i.e., for every tainted scope), we have to statically
analyze this scope, since dynamic analysis will only cover
those parts that are executed. This static analysis must make
sure that all variables that are assigned values (no matter
whether these values are tainted or not) inside such a scope
are also tainted. For instance, in the previous example from
Figure 7, this would mean that both x and y are tainted, in-
dependent of the actual branch that is executed. This makes
it impossible for an attacker to extract information about
sensitive values without triggering an XSS alert prompt. To
this end, we perform a simple, but effective linear static
pass through the bytecode of the tainted scope. Since it is
irrelevant for the analysis whether a variable is assigned a
tainted or an untainted value, it is not necessary to employ
a flow-sensitive analysis that understands the actual control
flow. All that matters is whether a variable is modified or
not. For example, one of the JavaScript instructions respon-
sible for assigning values to variables is setname. If the
static analysis encounters such an opcode during its linear
pass through the tainted scope, it taints the corresponding
variable (which is given as an argument to setname). If
a function call or an eval statement is encountered, the
JavaScript engine is switched into a special conservative
mode where every subsequent executed instruction is con-
sidered as being part of a tainted scope. The reason is that a
precise interprocedural analysis would be prohibitively ex-
pensive in a real-time browser setting. By switching into a
conservative mode, we prevent these additional costs, and
at the same time, provide security for the user. As shown in
our experiments in Section 7, this decision turned out to be
feasible in practice, as only a small number of false warn-
ings is generated.

One difficulty for a linear static analysis is that the in-
structions responsible for setting object properties (and ar-
ray elements) do not specify the target object (or array) as
immediate arguments because of the stack-based nature of
the JavaScript interpreter. Instead, these instructions re-
trieve their target from the stack. As a result, in order to
determine the target of an assignment to an object property,
static analysis requires information about the possible stack
contents at that point in the program. To this end, static taint
analysis has to be supported by an auxiliary stack analysis.

4.2 Stack Analysis

The purpose of stack analysis is to determine, for ev-
ery program point in the analyzed scope, which elements
the stack may contain. To achieve this, we employ a flow-
sensitive, intraprocedural data flow analysis [2]. For each
analyzed operation, we simulate the effects of this opera-
tion on the real stack by modifying an abstract stack ac-
cordingly. For instance, the false opcode is modeled by
pushing an element on the abstract stack that represents a
boolean value. Note that it is not necessary to track the ex-
act boolean value, it is sufficient to know that there is some
boolean value on the stack. For objects and arrays, how-
ever, the stack content is modeled in more detail, so that it
is possible to determine the target objects (and arrays) of
assignment instructions. The data flow analysis is greatly
simplified by the fact that the JavaScript engine demands
the size of the stack to be the same at control flow merge
points, regardless of the actual program path taken. This
way, the fixpoint iteration algorithm of data flow analysis
terminates quickly, and since stacks cannot grow infinitely
during loop constructs, there is no need for a widening op-
erator to enforce termination [24].
Currently, not all bytecode instructions are modeled in

our implementation. For instance, more complex operations
such as throw or try have been omitted. To achieve safe
results in spite of this limitation, the stack analysis informs
the static taint analysis whenever such an instruction occurs
in the analyzed scope. Subsequently, the static taint anal-
ysis safely assumes that all variables (and objects) that are
loaded onto the stack in this scope will be the target of an
assignment, and taints them as a result. This ensures that
the attacker is not able to leak information due to unmod-
eled instructions, keeping the user secure.

4.3 Justifying Hybrid Analysis

As discussed in the previous sections, our approach to
XSS prevention is to apply dynamic analysis techniques in
general, and static analysis techniques only when it is nec-
essary. An apparent alternative to this techniquewould be to
perform only static analysis. However, the reasons for using

a hybrid analysis are precision and efficiency. It is a well-
known fact that dynamic analysis generates more precise re-
sults than static analysis, which suffers from the conceptual
limitation of undecidability. Besides, precise static analysis
techniques are computationally expensive. This might be
irrelevant for static security analyses performed by appli-
cation developers before the deployment of the application.
However, in real-time settings, dynamic analysis techniques
are more suitable. By switching to a relatively fast type of
static analysis only at those points where it is necessary, we
combine the best of both approaches.

5 Data Transmission

The tainting mechanisms described so far only track the
status of data elements while they are processed by the
JavaScript engine. No steps are taken to prevent the leak-
age of sensitive information. For example, the execution
of JavaScript statements is not prevented in case of tainted
variables, nor is any data or part of it removed during the
processing. For a cross-site scripting attack to be success-
ful, the gathered data needs to be transferred to a site that is
under the attacker’s control. That is, the tainted data has to
be transferred to a third party. This transfer can be achieved
using a variety of methods. Some examples include:

• Changing the location of the current web page by set-
ting document.location.

• Changing the source of an image in the web page.
• Automatically submitting a form in the web page.
• Using special objects, such as theXMLHttpRequest
object.

To successfully foil a cross-site scripting attack, we prevent
the transfer of tainted data to third-party domains with any
of these methods. More precisely, we ask the user whether
this transfer should be allowed.

6 Implementation

Our prototype implementation extends the Mozilla Fire-
fox 1.0pre [20] web browser. There are two different parts
in the web browser that can contain tainted data objects.
One part is the JavaScript engine, which is called Spider-
Monkey [18]. Here, variables, functions, scopes, and ob-
jects can be tainted as a result of sensitive data that is pro-
cessed by JavaScript programs. The other part is the imple-
mentation of the DOM tree (e.g., location.href). To
store the additional tainting information, we modified data
structures in both parts of the browser. Even though we
were careful not to introduce deep changes to the program

logic and tried to reuse existing facilities, it turned out that a
considerable engineering effort was required to implement
the modifications.
Every time a JavaScript programattempts to transfer sen-

sitive data, a check is performed to determine whether the
host from which the document is loaded and the host to
which sensitive data is sent are from different domains. If
this is the case, an alert is raised, and the user can decide if
the transfer should be allowed or denied. Alternatively, the
user can choose to permanently allow or deny all transfers
between the two domains, or to permanently allow or deny
all transfers to the offending destination domain, regardless
of the current source domain.

7 Evaluation

To evaluate our system, we took several complementary
approaches. The most immediate step, which was con-
ducted during the development phase of our prototype, was
to perform a wide range of functionality tests by exploit-
ing a variety of small XSS vulnerabilities. These tests were
based on the experiences with cross-site scripting that our
group’s members have collected in the past. As expected,
these tests confirmed that our concepts were indeed capable
of protecting the user against XSS attacks.
In addition to tests with XSS attacks that were de-

signed internally, we verified that our system was also suit-
able for defending against real-world exploits. To this
end, we installed vulnerable versions of the following pop-
ular open-source web applications: phpBB 2.0.18 [25],
myBB 1.0.2 [9], and WebCal 3.04 [17]. Then, we launched
reported XSS attacks [1, 4, 5] against each of these appli-
cations. Again, our mechanism was successful in detect-
ing these attacks, and in each test the user was reliably
prompted before any sensitive information could be leaked.
Apart from defending against XSS attacks, in order to

be useful in practice a protection scheme must be efficient
and not bother its users with countless false warnings. To
evaluate these aspects, we conducted both manual and auto-
matic tests. For the manual tests, the modified browser was
used by the authors for web surfing on a daily basis. Com-
pared to the amount of processing necessary to fetch and
render web pages, the overhead of our extended JavaScript
engine is negligible. Thus, we did not experience any no-
ticeable slowdown when using our secure browser. Also,
the amount of false positives was low, although we were
regularly prompted with warnings of sensitive data trans-
fers.
Interestingly, although these alerts were not the result of

XSS attacks, they correctly warned about attempts to trans-
fer sensitive information across domain borders. These in-
formation transfers were caused by scripts from companies
that provide web site statistics or that perform user track-

ing. These scripts gather information (URL, referrer, title,
cookie, etc.) about the currently-visited page and transfer
it to a web application hosted on a different domain. Of
course, such information flows are not caused by cross-
site scripting attacks, as the scripts are inserted into the
web page with the consent of the web site owner. How-
ever, we believe that the warnings are actually useful be-
cause they provide the user with additional control over
the transmission of sensitive data. This way, the user is
given the chance to decide whether she regards the collec-
tion of this information as a violation of her privacy. Of
course, in this mode of operation, the level of protection
provided by our system ultimately depends on the user’s
right decisions about the connection attempts. In addition,
our prototype permits to conveniently define persistent poli-
cies so that the user has to decide for a particular destination
domain only once. For example, if an alert is generated
for an information transfer from www.slashdot.org
to www.google-analytics.com, the user can in-
struct our prototype to allow or deny transfers be-
tween these two domains forever. Alternatively, she can
also decide to permanently allow or deny transfers to
www.google-analytics.com. This reduces the num-
ber of warning prompts considerably. A higher level of con-
venience for the user can be achieved by pre-configuring the
browser with a number of typical, harmless destination do-
mains. For novice users, who might have problems with
taking the right decisions, the decision procedure can be
made completely automatic by disallowing all suspicious
connection attempts. Even though this might have an im-
pact on legitimate functionality in rare cases, we are confi-
dent that this is a reasonable and safe alternative for techni-
cally unsophisticated users.

The manual testing showed that our approach is effec-
tive and efficient, but we wanted to test our solution on a
more extensive set of data. Therefore, to obtain a com-
prehensive amount of test data, we enhanced the Firefox
browser with a web crawling engine. Using this crawler,
we were able to automatically visit a large number of pages
and determine a more representative estimate of incorrect
warning prompts that a user can expect when browsing.
Note that a traditional crawler would not be suited for our
needs, since it is not sufficient to simply fetch and store
HTML pages. Instead, it is necessary to take embedded
JavaScript code into account, and to simulate user behav-
ior in a realistic way. Because the crawler is directly us-
ing the Firefox web browser, it is capable of interpreting
JavaScript code so that our protection mechanisms are ac-
tivated automatically. Moreover, to simulate user behavior
and trigger JavaScript that is only activated when input is
typed into form elements, the crawler fills out all encoun-
tered web forms and submits them. Finally, another im-
portant aspect is the triggering of JavaScript events. Many

Destination Domain Number of Flows Type of Domain

.google-analytics.com 35,238 tracking, web statistics

.2o7.net 11,404 tracking, web statistics

.hitbox.com 6,458 tracking, web statistics

.webtrendslive.com 3,196 tracking, web statistics

.statcounter.com 2,518 tracking, web statistics

.sitemeter.com 2,099 web statistics

.revsci.net 1,866 tracking, advertisement

.blogger.com 1,221 blogging service (tracking)

.statistik-gallup.net 1,119 web statistics, tracking

.sitestat.com 899 tracking, web statistics

.gemius.pl 835 web statistics

.webtrends.com 690 tracking, web statistics

.urchin.com 662 web statistics, tracking

.liveperson.net 533 web statistics

.intellitxt.com 502 advertisement

.atdmt.com 470 tracking, advertisement

.tribalfusion.com 466 advertisement

.espotting.com 438 advertisement

.monster.com 430 career network (tracking)

.coremetrics.com 382 web statistics, tracking

.realmedia.com 363 tracking, web statistics

.hitslink.com 360 web statistics

.kontera.com 354 advertisement

.adbrite.com 339 advertisement

.akamai.net 330 web statistics, tracking

.247realmedia.com 316 advertisement

.estat.com 296 tracking, web statistics

.seeq.com 296 advertisement

.questionmarket.com 278 advertisement

.netflame.cc 267 tracking, web statistics

Table 2. Top-30 destination domains that caused the majority of the alert prompts.

web pages contain JavaScript code that is executed in as-
sociation with specific user actions (such as onclick or
onmouseover). To achieve exhaustive coverage of code
embedded in web pages, our crawler deliberately triggers
these events and also continues its analysis on pages that
are requested as a consequence of triggering these events.

By using our crawler, we were able to perform a large-
scale empirical evaluation of our XSS protection mecha-
nisms, visiting a total of 1,033,000 unique web pages. To
achieve a broad coverage of visited domains, we limited the
maximum number of pages to be visited per domain to 100.
From all visited pages, 88,589 (8.58%) triggered an XSS
alert prompt. After a closer inspection of these warnings, it
turned out that a majority of themwere caused by attempted
connections to only a few destination domains. Just as we
expected from our manual experiments, these domains be-
long to companies that collect statistics about traffic on the
web sites of their customers. Table 2 lists the top 30 do-
mains that were the target of most information flows, the
number of flows to these domains, and the types of compa-
nies that own them. When providing rules (deny or accept)
for only these top 30 domains, it is possible to reduce the
number of alert prompts to 13,964 (1.35%). For instance,
this could be achieved by shipping the enhanced browser
with a built-in list of these domains, and by denying the
transfer of sensitive information to these domains by de-

fault. If the user has fewer concerns about privacy, she can
still change some or all of these rules into accept rules.

A further reduction of the number of alert prompts can
be achieved by being less restrictive about what kind of data
is considered to be sensitive. Our current implementation is
rather restrictive in this respect, and even protects less crit-
ical pieces of data such as document.lastModified.
Usually, the sole information that has to be protected in or-
der to foil XSS attacks is information stored in cookies. By
analyzing those remaining alerts that were not caused by the
Top-30 domains mentioned above, it turned out that only
5,289 of these alerts were due to attempts to transfer cookie
data. This means that by focusing on the protection of cook-
ies, the number of alert prompts can be further reduced from
13,964 to 5,289 (this value amounts to one prompt for ev-
ery two hundred random pages that are visited). A more
detailed breakdown of the different causes for alert prompts
can be found in Table 3. Note that some prompts are the
result of more than one sensitive source.

After inspecting a small sample of the 5,289 cases re-
sponsible for cookie-related alert prompts, it turned out
that in many of these cases, user information was sent to
less-known tracking sites that happened to be not in the
Top-30 list. Another group of warnings were "semantic"
false positives, in the sense that even though cookie infor-
mation was transferred to a different domain, it was not
transferred across company borders. For instance, we ob-

Sensitive Source(s) Information Flows
Cookie 5,289
Form Data 735
Location 8,187
Referrer 8,696
Title 4,246
Links and Anchor 171
Status 726

Table 3. Sensitive information transferred to
the remaining domains (not Top-30).

served an exchange of sensitive data between cnn.net
and cnn.com. In a less obvious case, data transfer
took place between the domains discover.com and
unitedstreaming.com, which turned out to belong
to the same company. Finally, we also observed some
false positives that were due to our conservative tainting ap-
proach. For example, some pages use JavaScript to check
whether the browser allows cookies to be set. To this end,
the script first stores some string into a cookie and imme-
diately reads it back. Then, a check is made to determine
whether the value was successfully stored. Because the
cookie is considered sensitive, this check opens a tainted
scope. As we want to prevent information leaks that exploit
indirect control flows, all values written in this scope have
to be tainted. When one of these values is later used in a
cross-domain connection, a warning is raised.
In summary, the results of our empirical evaluation

demonstrate that only a small number of false warnings is
generated. Besides, even though these warnings do not cor-
respond to real XSS attacks, they still provide the user with
additional control in terms of web privacy. Given that our
protection approach provides strong security against cross-
site scripting, we believe that our system is a practical and
viable solution against XSS attacks.

8 Conclusions

Cross-site scripting (XSS) is one of the most frequent
vulnerabilities found in modern web applications. Never-
theless, many service providers are either not willing or not
able to provide sufficient protection to their users. This pa-
per proposes a novel, client-side solution to this problem.
By modifying the popular Firefox web browser, we are able
to dynamically track the flow of sensitive values (e.g., user
cookies) on the client side. Whenever such a sensitive value
is about to be transferred to a third party (i.e., the adversary),
the user is given the possibility to stop the connection. To
ensure protection against more subtle types of XSS attacks
that try to leak information through non-dynamic control

dependencies, we additionally employ an auxiliary, efficient
static analysis, where necessary. With this combination of
dynamic and static techniques, we are able to protect the
user against XSS attacks in a reliable and efficient way. To
validate our concepts, we automatically tested the enhanced
browser on more than one million web pages by means of a
crawler that is capable of interpreting JavaScript code. The
results of this large-scale evaluation demonstrate that only
a small number of false positives is generated, and that our
underlying concepts are feasible in practice.

9 Acknowledgments

This work was supported by the Austrian Science Foun-
dation (FWF) under grants P18368 (Omnis) and P18764
(Web-Defense), and by the Secure Business Austria com-
petence center.

References

[1] addmimistrator@gmail.com. MyBB 1.0.2 XSS At-
tack in search.php Redirection. http://www.
securityfocus.com/archive/1/423135,
January 2006.

[2] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 1986.

[3] J. Allen. Perl Version 5.8.8 Documentation - Perlsec.
http://perldoc.perl.org/perlsec.pdf, 2006.

[4] M. Arciemowicz. phpBB 2.0.18 XSS and Full Path
Disclosure. http://archives.neohapsis.com/
archives/fulldisclosure/2005-12/0829.
html%, December 2005.

[5] S. Bubrouski. Advisory: XSS in WebCal (v1.11-v3.04).
http://archives.neohapsis.com/archives/
fulldisclosure/2005-12/0810.html%, Decem-
ber 2005.

[6] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. Iyer. De-
feating Memory Corruption Attacks via Pointer Taintedness
Detection. In IEEE International Conference on Depend-
able Systems and Networks (DSN), 2004.

[7] D. E. Denning. A Lattice Model of Secure Information
Flow. In Communications of the ACM, 1976.

[8] J. Goguen and J. Meseguer. Security Policies and Security
Models. In IEEE Symposium on Security and Privacy, 1982.

[9] M. Group. MyBB - Home. http://www.mybboard.
com/, 2006.

[10] V. Haldar, D. Chandra, and M. Franz. Dynamic Taint Prop-
agation for Java. In Twenty-First Annual Computer Security
Applications Conference (ACSAC), 2005.

[11] O. Hallaraker and G. Vigna. Detecting Malicious JavaScript
Code in Mozilla. In 10th IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS05),
2005.

[12] O. Ismail, M. Etoh, Y. Kadobayashi, and S. Yamaguchi. A
Proposal and Implementation of Automatic Detection/Col-
lection System for Cross-Site Scripting Vulnerability. In
Proceedings of the 18th International Conference on Ad-
vanced Information Networking and Application (AINA04),
March 2004.

[13] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static
Analysis Tool for Detecting WebApplication Vulnerabilities
(Short Paper). In IEEE Symposium on Security and Privacy,
2006.

[14] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes: A
Client-Side Solution for Mitigating Cross-Site Scripting At-
tacks. In The 21st ACM Symposium on Applied Computing
(SAC 2006), 2006.

[15] C. Kruegel and G. Vigna. Anomaly Detection of Web-based
Attacks. In 10th ACM Conference on Computer and Com-
munication Security (CCS-03) Washington, DC, USA, Octo-
ber 27-31, pages 251 – 261, October 2003.

[16] G. D. Lucca, A. Fasolino, M. Mastroianni, and P. Tramon-
tana. Identifying Cross Site Scripting Vulnerabilities in Web
Applications. In Sixth IEEE International Workshop on Web
Site Evolution (WSE’04), pages 71 – 80, September 2004.

[17] marndt@bulldog.tzo.org. WebCal - A Web Based Calen-
dar Program. http://bulldog.tzo.org/webcal/
webcal.html, May 2003.

[18] Mozilla Foundation. SpiderMonkey - MDC.
http://developer.mozilla.org/en/docs/
SpiderMonkey, December 2005.

[19] Mozilla Foundation. JavaScript Security: Same Ori-
gin. http://www.mozilla.org/projects/
security/components/same-origin.html,
February 2006.

[20] Mozilla Foundation. Mozilla.org - Home of the Mozilla
Project. http://www.mozilla.org, 2006.

[21] Netscape. Using data tainting for security.
http://wp.netscape.com/eng/mozilla/3.
0/handbook/javascript/advtopic.htm%, 2006.

[22] J. Newsome and D. Song. Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and Signature Generation of Ex-
ploits on Commodity Software. In Network and Distributed
System Security Symposium (NDSS), 2005.

[23] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans. Automatically Hardening Web Applications Us-
ing Precise Tainting. In 20th IFIP International Information
Security Conference, Makuhari-Messe, Chiba, Japan, 05 06
2005.

[24] F. Nielson, H. Nielson, and C. Hankin. Principles of Pro-
gram Analysis. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1999.

[25] phpBB Group. phpBB.com :: Creating Communities.
http://www.phpbb.com, 2006.

[26] T. Pietraszek and C. Berghe. Defending against Injection
Attacks through Context-Sensitive String Evaluation. In Re-
cent Advances in Intrusion Detection (RAID), 2005.

[27] A. Sabelfeld and A. Myers. Language-Based Information-
Flow Security. In IEEE Journal on Selected Areas in Com-
munications, pages 5 – 19, January 2003.

[28] G. Suh, J. Lee, and S. Devadas. Secure Program Execution
via Dynamic Information Flow Tracking. In International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2004.

[29] W3C - World Wide Web Consortium. Docu-
ment Object Model (DOM) Level 3 Core Spec-
ification. http://www.w3.org/TR/2004/
REC-DOM-Level-3-Core-20040407/
DOM3-Core.pdf, April 2004.

[30] W. Xu, S. Bhatkar, and R. Sekar. Taint-Enhanced Policy
Enforcement: A Practical Approach to Defeat a Wide Range
of Attacks. In 15th Usenix Security Symposium, 2006.

