
Thesycon Systemsoftware & Consulting GmbH®

Fujitsu USB Firmware Api FUFA

MB90330 and MB90335 serie

Reference Manual

Version 1.01 April 20, 2005

ThesyconR© Systemsoftware & Consulting GmbH

Werner-von-Siemens-Str. 2· D-98693 Ilmenau· GERMANY

Tel: +49 3677 / 8462-0

Fax: +49 3677 / 8462-18

e-mail: info@thesycon.de
http://www.thesycon.de

Copyright (c) 2003-2005 by Thesycon Systemsoftware & Consulting GmbH

All Rights Reserved

Disclaimer

Information in this document is subject to change without notice. No part of this manual may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic or
mechanical, including photocopying and recording for any purpose other than the purchaser’s per-
sonal use, without prior written permission from Thesycon Systemsoftware & Consulting GmbH.
The software described in this document is furnished under the software license agreement dis-
tributed with the product. The software may be used or copied only in accordance with the terms
of the license.

Trademarks

The following trade names are referenced throughout this manual:

Microsoft, Windows, Win32, Windows NT, Windows XP, and Visual C++ are either trademarks
or registered trademarks of Microsoft Corporation.

Other brand and product names are trademarks or registered trademarks of their respective holders.

Contents

Contents

Table of Contents 7

1 Introduction 9

2 Overview 11

2.1 Compiler . 11

2.2 Features. 11

2.3 Restrictions. 12

3 Architecture 13

3.1 Typical Program Flow . 14

3.2 Integration of the Library into an Application. 17

3.3 Compile time Configuration. 17

3.4 Library Interrupt Handler. 17

3.5 Synchronization. 17

3.5.1 Without Operating System. 18

3.5.2 With Operating System. 18

3.6 Data Transfer and Performance. 18

3.6.1 Transfer Device to PC. 18

3.6.2 Transfer PC to Device. 18

3.7 Class and Vendor Requests. 18

3.7.1 Error Handling. 19

3.7.2 Request without data phase. 19

3.7.3 Request with data phase from PC to Device. 19

3.7.4 Request with data phase from Device to PC. 20

3.8 Hardware Requirements. 20

4 Programming Interface 21

4.1 API Functions. 21

LibUsbSetupBuffer. 22

LibUsbSetupHandshake. 24

UsbLibInitialize . 25

UsbLibEnable. 27

UsbLibDisable . 28

UsbLibWakeupPC . 29

USB Firmware Library Reference Manual 5

Contents

UsbLibGetFrameNumber. 30

UsbLibRead. 31

UsbLibWrite . 33

UsbLibAbort . 35

UsbLibSetStall . 36

UsbLibClearStall . 37

UsbControlEndpointInterrupt. 38

UsbDataEndpointInterrupt. 39

UsbFunctionInterrupt. 40

4.2 API Call Back Functions. 41

USBLIB_SETUP_EVENT. 42

USBLIB_SETUP_DATA_TRANSFERRED. 43

USBLIB_SETUP_HANDSHAKE_COMPLETE 44

USBLIB_DEVICE_EVENT . 45

USBLIB_ENDPOINT_EVENT . 46

USBLIB_START_OF_FRAME . 47

USBLIB_TRANSFER_COMPLETION. 48

4.3 Structures. 49

USBLIB_DESCRIPTORS. 50

USBLIB_EP_CFG . 52

USBLIB_CONFIGURATION . 53

USBLIB_CALLBACKS . 54

USBLIB_BUFFER_DESCRIPTOR. 56

4.4 Error Codes. 58

USBLIB_STATUS_SUCCESS(0x0000L) 58

USBLIB_STATUS_ERROR(0x0001L) . 58

USBLIB_STATUS_CANCELED(0x0002L) 58

USBLIB_STATUS_TRANSMISSION_ERROR(0x0003L) 58

USBLIB_STATUS_BUFFER_OVERFLOW(0x0004L) 58

USBLIB_STATUS_BUSY(0x0005) . 58

USBLIB_STATUS_INVALID_PARAM (0x0006) 58

USBLIB_STATUS_PENDING(0x0007) . 58

5 Demo Application 59

5.1 USB Interface. 59

6 USB Firmware Library Reference Manual

Contents

5.2 Initial Steps . 59

5.3 Configuration. 60

5.4 Performance. 60

5.5 Program size . 62

5.6 Summary . 62

6 Configuration and Translation of the Library 63

6.1 Hardware depended configurations. 63

6.2 Development environment. 63

6.3 Installation . 65

6.3.1 Loading the device binaries. 65

6.3.2 USB Device driver Installation. 66

6.3.3 Start the Test application. 66

7 Related Documents 67

Index 69

USB Firmware Library Reference Manual 7

1 Introduction

1 Introduction

FUFA is a generic Universal Serial Bus (USB) firmware library for the 16-bit FUJITSU controller
MB90330 and MB90335 serie. It covers the entire USB function of the micro controller and
provides a convenient to use software API.

This document describes the architecture, the features and the programming interface of the FUFA
firmware library. Furthermore, it includes instructions for including the library into a project.

The reader of this document is assumed to be familiar with the specification of the Universal Serial
Bus Version 1.1 and 2.0 and with common aspects of C programming.

USB Firmware Library Reference Manual 9

2 Overview

2 Overview

The USB function block is build into the MB90330 micro controller and handles the lower layer
of the USB protocol. The higher layer of the USB protocol must be implemented in the software
of the micro controller. The quality of this software implementation is very important to work
together with several operating systems and host controllers. By using the FUFA firmware library
it is possible to get the USB interface up and running without spending the time and the effort of
developing a new USB firmware.

2.1 Compiler

The FUFA library supports the following C-compiler:

• F2MC-16 Family SOFTUNE Workbench V30L31 with fs907s compiler

2.2 Features

The FUFA library provides the following features:

• supports USB 1.1 full speed data transfer

• handles all USB standard request without that are already implemented in the USB function.

• supports all data transfer types: control, bulk, interrupt and isochronous

• supports Class- and Vendor specific requests

• provides static USB events to the application, e.g. Reset, SetConfiguration,Resume and
Suspend

• simple to use software interface

• usage of continuous mode and DMA transfer

• interrupt driven model

The FUFA library can be used to implement class conform device interfaces as well as vendor
defined interfaces. If use HID descriptors then can do this by implementing a call back routine for
the vendor specific request. The callback routine is called if a non standard Get Descriptor request
is received. The user must check the setup request and if this the rigth HID descriptor handle the
request, see also the handling of vendor requests in the demo firmware.

USB Firmware Library Reference Manual 11

2 Overview

2.3 Restrictions

Some restrictions that apply to the FUFA firmware library are listed below.

• It is not allowed to inhibit USB interrupt execution for more than some microseconds. Oth-
erwise it cannot be guarantied to respond descriptor requests correctly in time.

• An "Abort SETUP request" while in data IN stage is not recognized automatically. EP0
may become unusable.

• "Clear Feature Endpoint Stall" is not recognized by the USB function. Transfer data may
get lost.

• The function library supports only one USB configuration at a time.

• Only one alternate setting (index 0) is supported by MB90330/90335 Series.

• If DMA is used on an OUT endpoint, then same data package sizes have to be used on host
and function software.

12 USB Firmware Library Reference Manual

3 Architecture

3 Architecture

Figure1 shows the FUFA library architecture.

Hardware
Abstraction Layer

USB Function
Registers

User Interface

Hardware

Embedded
Application

Operating
System

Abstraction
Layer

USB Library

USB
function
controller

Operating
System

Library

Figure 1:FUFA Software Architecture

The following modules are shown in Figure1:

• The Embedded Application is the software running on the MB90330 and the MB90335
series. It uses the FUFA library to communicate via USB with the PC.

• The FUFA Library is divided in three parts: The USB Library, the Hardware Abstraction
Layer (HAL), and the Operating System Abstraction Layer (OSAL). The USB Library han-
dles the standard USB requests and the data transfer on an abstract level. The HAL performs
the access to the registers of the USB function. The OSAL is the interface to the operat-
ing system. It requires a mechanism for synchronization, a debug print function, and some
helper functions. It can be easily adapted to projects without a operating system.

• The Hardware contains the USB related register and the physical connection to the USB
connector.

This document describes the FUFA interface and the interface of the OSAL. The interface between
the USB library and the HAL is not described.

USB Firmware Library Reference Manual 13

3 Architecture

3.1 Typical Program Flow

• At first the application must call the functionUsbLibInitialize . The application passes the
USB descriptors, a USB configuration structure, and some call back function pointers to this
routine. With this parameters the run time configuration of the FUFA library is complete.

• The functionUsbLibEnable turns on the resistor between the USB D+ line and the 3.3V
if +Vusb is detected on the power pin of the USB connector. If Vusb is not detected then
the library waits for an Vusb Interrupt to switch the 1,5k resistor to 3,3V. After connection
of the 3,3V with the 1,5k resistor the Host starts the enumeration to that device. Finally the
Host software configure the device see alsoHardware Requirements. The embedded user
application is informed about that the device is configured.

• After detection of the configuration the embedded application can start reading and writing
on the USB interface by using the functionsUsbLibReadandUsbLibWrite . The following
modules are shown in Figure2:

• The embedded application can perform a virtual unplug of the USB device by calling the
functionUsbLibDisable.

Figures2 and 3 shows the program flow for reading and writing.

14 USB Firmware Library Reference Manual

3 Architecture

Program Flow sheet
for use of UsbLibRead() and UsbLibWrite() in the main()

context

UsbLibRead()
UsbLibWrite()

Helper function
UserProcessData()

success

start of
reading or

writing

error

wait for the signaling of the completion
routine and then call UsbLibRead() or

UsbLibWrite() again.
Another way is to call UsbLibRead() or
UbsLibWrite() again in the context of
UsbLibInterrupt() in the Completion

routine!

USBLIB_STATUS_
PENDING

status?

Figure 2:UsbLibRead and UsbLibWrite Program Flow in the main() context

USB Firmware Library Reference Manual 15

3 Architecture

UsbLibInterrupt()
is called from all USB Interrupt sources

User defined Completion Routine()

indirect call to the
user defined Completion routine()

UserProcessData()

UsbLibRead()
UsbLibWrite()

in context of UsbLibInterrupt()

Helper function
UserProcessData()

get and set
Buffer

relevant
elements

returns success
returns a

error

USBLIB_BUFFER
_DESCRIPTOR

DataBuffer
Size

ByteCount
Status

functionpointer
*CompletionRoutine()

Program Flow sheet
for use of UsbLibReead() and UsbLibWrite() in

the UsbLibInterrupt() context

returns pending

all data read

Figure 3:UsbLibRead and UsbLibWrite Program Flow in the UsbLibInterrupt() context

16 USB Firmware Library Reference Manual

3 Architecture

3.2 Integration of the Library into an Application

The library does not require any external libraries or function calls. The OSAL layer defines a
debug print function. A system independet implementation of the print function is implemented
in the file dbgprint.c. This file requires the include files <string.h> and <stdarg.h>. But the debug
print function can be mapped to any other debug print capability of a existing project. The header
file <func_api.h> contains the definition of function prototypes, structures and status codes. It
should be included by the embedded application. The other source code files should be added to
the project of the embedded application. The data and code size of the library are describe in the
section5.5

3.3 Compile time Configuration

Some parameters can be defined at compile time. Please refer to the comments in the file
<func_conf.h>.

3.4 Library Interrupt Handler

All USB specific interrupt handler functions and the USB interrupt vector table are implemented
in the FUFA library. The IRQ level of the function interrupts have the interrupt level one, so the
user can implement a interrupt routine with a higher priority. The user interrupt routines that run
at the highest priority must very quickly because a slow user interrupt routine can lead to that the
USB device does not correctly enumerate (MB90330 USB specific). To optimize the library each
interrupt handler passes the source of the interrupt to the functionUsbLibInterrupt , which
is defined in the Library sources.

3.5 Synchronization

The library has internal data structures and the USB function requires special sequences which
must not be interrupted. From this point of view the library is not reentrant. To synchronize
the code execution in the library several methods are possible. A operating system may provide
special objects like critical sections or semaphores. To synchronize code without an operating
system typically some or all interrupts are disabled. Each of this method may have drawbacks to
the application.

To understand the synchronization the internal operation of the library is important. All call back
functions are called in the context of the FUFA functionUsbLibInterrupt() .
UsbLibInterrupt() is called in the USB interrupt handler so all call back functions are
running also in the context of the USB function interrupt handler. Call back functions are never
called in another context as the USB interrupt handler.

The library provides in the OSAL layer two functions Enter- and Leave-macros which can be used
to synchronize the code. The library makes sure, that after each call of Enter the Leave function is
called. The library does not call the macro Leave before a call back function is called. So the call
back functions are running under the protection of the Enter and Leave macros. In some call back
functions it is useful to call the library again. In this case the Enter macro may be called two or
more times before the leave macro is called. The macros can be adapted in one of the following
ways. The default implementation for the Enter() macro is DI() and for the Leave Mcro is EI().

USB Firmware Library Reference Manual 17

3 Architecture

3.5.1 Without Operating System

The Enter function stores the state of the global interrupt enable flag or the interrupt level (depends
from the used controller) and disable all interrupts. The Leave function restores the value of the
flag or the interrupt level.

3.5.2 With Operating System

The Enter function requests a synchronization event from the operating system. The synchroniza-
tion event must allow to be entered multiple times by the same thread. If the object is in use and
requested by a different thread the current thread must be suspended. The Leave function releases
the synchronization event.

3.6 Data Transfer and Performance

For data endpoints the FUFA library supports continuos mode and DMA to achieve a high data
through put. The library uses only one buffer per endpoint to save memory. The following discus-
sion shows that one buffer is sufficient to give the embedded application enough time for reaction.

3.6.1 Transfer Device to PC

The library copies as much as possible data in the FIFO of the micro controller. The library
completes the buffer if the last content is copied into the FIFO. At this point of time the content
of the buffer is not yet completely submitted to the PC. The embedded application should be able
to re-submit a new buffer with data before the data in the FIFO is transmitted to the PC. This
time interval is determined by the size of the FIFO. On interrupt and isochronous pipes only one
transmission per frame is performed. The transmission buffer of the used USB function is double
buffered so the embedded application has about 2 frames time to refill these buffers.

3.6.2 Transfer PC to Device

After the device is configured the library enables all data endpoints. This enables the PC to transfer
data into the FIFO’s of OUT endpoints. Now the device can receive data. At this point the device
can receive data until the free length of bytes in the FIFO (maximum free length is the maximum
packet size * 2) is zero. So the device can read data after configuration without submit a buffer for
reading.

If the embedded application now submit a buffer for reading the library checks the FIFO of the
endpoint and copy the data to the user buffer. Are all bytes received the completion routine is
called. If a buffer is completed the FIFO of the endpoint should be empty until the host send the
next data.

3.7 Class and Vendor Requests

USB allows to use the endpoint 0 for class or vendor specific requests. Such a setup request
consists of 3 phases:

18 USB Firmware Library Reference Manual

3 Architecture

• Setup phase,

• Data phase,

• Handshake phase.

The setup phase is always sent by the PC and it contains 8 bytes of data. Please refer to the USB
specification for more details. 5 bytes of this setup packet can be defined by the user. Furthermore
the setup contains the direction and length of the data phase. If the length field is set to zero the
data phase is skipped.

The data phase on Windows PC’s is limited to 4096 bytes. Other operating systems may allow a
data phase up to 64 KB.

The handshake phase allow the device to acknowledge or stall the request. If the device cannot
handle the setup request or the data transferred in the data phase, it can return this error to the PC
software by stalling the endpoint.

The FUFA library supports all kinds of class and vendor requests. It implements two methods to
handle the data phase. One method is called FIFO-based and the other is called buffer based. The
embedded application can handle each request with a data phase with one of these methods. If the
buffer based method is used the application passes a buffer which is large enough to handle the
complete data phase. This make the handling for the embedded application easy but requires a lot
of memory. If the FIFO-based method is used the application uses a buffer with the FIFO size of
endpoint 0 and transferees the data in FIFO sized chunks. Both methods are discussed in detail in
the following sections.

3.7.1 Error Handling

The application can abort each setup request. That means the expected sequence setup, data, and
handshake can be interrupted. The embedded application must be able to handle a new setup in
each state. If the PC starts a new setup the old setup is discarded.

3.7.2 Request without data phase

The library calls the functionUSBLIB_SETUP_EVENT and passes the 8 bytes of the setup
to the emdedded application. It decodes and performs the request and enables the status phase
by calling the functionLibUsbSetupHandshake. It passes a flag to this function to indicate
if the request should be acknowledged or stalled. If the handshake was sent the library calls
USBLIB_SETUP_HANDSHAKE_COMPLETE . A request without data phase is only allowed
if the request direction bit is zero (Vendor OUT Request). To send short messages it is very
efficient to use this request with the free setup fields wValue and/or wIndex.

3.7.3 Request with data phase from PC to Device

The library calls the functionUSBLIB_SETUP_EVENT. The embedded application decodes
the request. If the request cannot be handled the embedded application can stall the request by
calling LibUsbSetupHandshake. If the request should be handled FIFO-based, the application
calls the functionLibUsbSetupBuffer with the flag USBLIB_FIFO_BASED until a short packet

USB Firmware Library Reference Manual 19

3 Architecture

is received or the complete length of the request is transferred. If the request should be han-
dled buffer based, the embedded application calls the functionLibUsbSetupHandshakeone time
with a buffer size equal to the length field of the setup request. The library calls the function
USBLIB_SETUP_DATA_TRANSFERRED each time a buffer is filled. If all data has been
transferred the application processes the data and enable the status phase with acknowledge or
stall. Finally the library calls saaUSBLIB_SETUP_HANDSHAKE_COMPLETE.

3.7.4 Request with data phase from Device to PC

Such a request is processed in the same way as a setup request with data phase from PC to Device
is processed. The embedded application can return the requested amount of data or less. The
minimum data length of this requests must for be always greater then one. If the embedded
application uses the FIFO based method it must call the functionLibUsbSetupBuffer the last
time with a buffer size smaller than the FIFO size. The last call can be performed with a length
of zero if the returned amount of data is less than the requested and the returned data size is a
multiple of the control endpoint FIFO size. The control endpoint FIFO size can vary between the
different USB function controller. The default size is 64Bytes.

E.g. the PC requests 1024 bytes and the embedded application wants to return 64 bytes with a
FIFO size of endpoint 0 of 64 bytes. The embedded application calls the function LibUsbSetup-
Buffer one time with a size of 64 and one time with a size of 0.

If the buffer based method is used the library takes care to send a short packet if it is required.
In the example above the application must call one time the function LibUsbSetupBuffer with the
buffer size 64.

3.8 Hardware Requirements

The following requirements must be fulfilled by the circuit of the MB90330 serie

• Between the USB line D+ and +3,3V must be a resistor with 1.5 k that is controled with an
external transistor and connected to the HCONX pin of the MB90330. This enables the soft
connect with the functionUsbLibEnable.

• The voltage line from the USB connector must be connected to the pin VBUS.

20 USB Firmware Library Reference Manual

4 Programming Interface

4 Programming Interface

4.1 API Functions

This section describes the API functions which are called by the embedded application.

USB Firmware Library Reference Manual 21

4 Programming Interface

LibUsbSetupBuffer

Call this function to pass a buffer for the data phase of a setup request.

Definition

USBLIB_STATUS
LibUsbSetupBuffer (

unsigned int BufferSize ,
void* Buffer ,
unsigned char Flags
);

Parameters

BufferSize
This field contains the size of the buffer. The size of the buffer must be fulfill the
following conditions:

Direction IN and USBLIB_FIFO_BASED not set
The buffer size must be less or equal to the requested length.

Direction IN and USBLIB_FIFO_BASED set
The buffer size must be less or equal to the FIFO size. The last call of this
function must be called with a buffer size less than the FIFO size. Zero is allowed.
The sum of all buffer sizes used for one setup request must be less or equal to the
to the requested length.

Direction OUT and USBLIB_FIFO_BASED not set
The buffer size must be grater than or equal to the requested length.

Direction OUT and USBLIB_FIFO_BASED set
The buffer size should always equal to the FIFO size. The end of the data phase is
signaled by a short packet or if the sum of all transfers has reached the length
parameter. The PC should never send more data than announced through the
requested length.

Buffer
This field contains a pointer to data transfer buffer. The caller must provide the storage.
The storage must be permanent until the function
USBLIB_SETUP_DATA_TRANSFERRED is called. This pointer can be NULL if the
BufferSize is 0. In this case the library sends a zero length data packet.

Flags
This field contains zero or the USBLIB_FIFO_BASED flag. If the
USBLIB_FIFO_BASED flag is set the data exchange between the library and the
embedded application takes place on the base of FIFO sized buffers. The function
LibUsbSetupBuffer and USBLIB_SETUP_DATA_TRANSFERRED may be called
repeatly. This enables the embedded application to handle large data phases with a small
memory usage. This is possible if the data can be processed sequentially.

22 USB Firmware Library Reference Manual

4 Programming Interface

Comments

This function is called in the context of the call back functions USBLIB_SETUP_EVENT
or USBLIB_SETUP_DATA_TRANSFERRED if the length parameter in the setup
request is greater than 0.

See Also

USBLIB_SETUP_EVENT (page42)
USBLIB_SETUP_DATA_TRANSFERRED (page43)
LibUsbSetupHandshake(page24)

USB Firmware Library Reference Manual 23

4 Programming Interface

LibUsbSetupHandshake

Call this function to enable the handshake phase of a setup request.

Definition

USBLIB_STATUS
LibUsbSetupHandshake (

unsigned char Flags
);

Parameter

Flags
This field contains the flag USBLIB_STALL_EP0 or 0. If the embedded application
cannot handle the request it should set the flag USBLIB_STALL_EP0. The PC software
gets a special error code which indicates that the request was not handled by the device.

Comments

This function is called in the context of the call back functions USBLIB_SETUP_EVENT
if the length parameter in the setup request is equal to 0. This function is called in the
context of the callback function USBLIB_SETUP_DATA_TRANSFERRED if all
required data has been transferred.

See Also

USBLIB_SETUP_EVENT (page42)
USBLIB_SETUP_DATA_TRANSFERRED (page43)
LibUsbSetupBuffer (page22)

24 USB Firmware Library Reference Manual

4 Programming Interface

UsbLibInitialize

This function must be called to initialize the library.

Definition

USBLIB_STATUS
UsbLibInitialize (

USBLIB_DESCRIPTORS* Descriptors ,
USBLIB_CONFIGURATION* Configuration ,
USBLIB_CALLBACKS* CallBacks ,
unsigned int Flags
);

Parameters

Descriptors
This structure contains pointers to USB descriptors. The USB descriptors must be
designed compliant to the USB specification. The content of the descriptors must agree
with the configuration data. The storage for this data structure must be permanent. It can
be placed in RAM or FLASH.

Configuration
This structure contains the USB configuration. SeeUSBLIB_CONFIGURATION and
USBLIB_EP_CFG for details. The storage for this data structure must be permanent. It
can be placed in RAM or FLASH.

CallBacks
This structure contains call back function pointers. Each pointer is optional and can be
NULL. SeeUSBLIB_CALLBACKS for details. The storage for this data structure must
be permanent. It can be placed in RAM or FLASH.

Flags
This parameter contains a or’ed combination of the following flags.

USBLIB_USE_INTERRUPTS indicates that the library is used in interrupt mode.

Return Value

The function returns one of the following status codes:

USBLIB_STATUS_SUCCESS if the initialization was successful.

USBLIB_STATUS_INVALID_PARAM if a parameter was invalid.

Comments

This function must be called one time after power on reset to initialize the library. It is
recommendable to check the return values before enable the usb device.

USB Firmware Library Reference Manual 25

4 Programming Interface

See Also

USBLIB_CONFIGURATION (page53)
USBLIB_EP_CFG (page52)
USBLIB_CALLBACKS (page54)

26 USB Firmware Library Reference Manual

4 Programming Interface

UsbLibEnable

This function enables the USB interface.

Definition

USBLIB_STATUS
UsbLibEnable ();

Return Value

The function fails if the library is not initialized or if the device is selfpowered and not
connected to a USB host (Usb Vcc is not detected).

Comments

If this function is successfully called, the PC loads the kernel device driver and
enumerates the USB device. The embedded application should wait until the call back
functionUSBLIB_DEVICE_EVENT with the event USBLIB_CONFIGURE is called.
Then the application can start the data transfer by callingUsbLibReadand
UsbLibWrite .

See Also

UsbLibInitialize (page25)
UsbLibDisable (page28)
UsbLibRead (page31)
UsbLibWrite (page33)

USB Firmware Library Reference Manual 27

4 Programming Interface

UsbLibDisable

This function disables the USB interface.

Definition

USBLIB_STATUS
UsbLibDisable ();

Return Value

The function fails if the library is not initialized.

Comments

This function causes a virtual unplug of the device by switch off the 1,5k resistor from the
3.3V. The kernel driver on the PC is unloaded. All submitted buffers will completed with
the cancel status. All USB Interrupts inclusive the resume interrupt will disabled. If the
embedded application calls this function it must wait for at least one second before the
USB interface can be enabled again with the functionUsbLibEnable. All pending
requests are cancelled.

See Also

UsbLibInitialize (page25)
UsbLibEnable (page27)

28 USB Firmware Library Reference Manual

4 Programming Interface

UsbLibWakeupPC

This function wakes up the PC.

Definition

USBLIB_STATUS
UsbLibWakeupPC (

unsigned char WakeupEnable
);

Parameter

WakeupEnable
The first time WakeupEnable must set to TRUE and the second time WakeupEnable must
set to FALSE. The user must wait for 10ms between the two calls. After the second call
the resume signaling to the PC ends.

Return Value

The function fails if the library is not initialized, the device is not in suspended state, or
the USBLIB_ENABLE_REMOTE_WAKEUP was not send by the PC.

Comments

This function can be used to wake up a PC from the standby state after the function is set
to the USB suspended state from the PC. This USB feature must be enabled by the PC
driver. Some additional USB host controller may not support remote wake up. To make
sure that a USB host controller supports this feature a standard USB mouse can be used to
test the host controller. Normally remote wakeup does not work if the PC has entered the
hibernate state. The function must be called twice, see the WakeupEnable parameter.

See Also

UsbLibInitialize (page25)
UsbLibEnable (page27)

USB Firmware Library Reference Manual 29

4 Programming Interface

UsbLibGetFrameNumber

This function returns the current USB frame number.

Definition

unsigned int
UsbLibGetFrameNumber ();

Return Value

The return value of the function is undefined if the library is not initialized and the device
is not yet configured. The return value is the last USB frame number with 11 valid bits.
The result is in the range between 0 and 2047.

Comments

The frame number may be useful to synchronize several devices.

See Also

UsbLibInitialize (page25)
UsbLibEnable (page27)
USBLIB_START_OF_FRAME (page47)

30 USB Firmware Library Reference Manual

4 Programming Interface

UsbLibRead

This function submits a buffer to the driver which receives data from the PC.

Definition

USBLIB_STATUS
UsbLibRead (

unsigned char Endpoint ,
USBLIB_BUFFER_DESCRIPTOR*BufferDesc
);

Parameters

Endpoint
This parameter contains the endpoint address with direction bit. For a read request the
direction bit 0x80 is always zero.

BufferDesc
This is the pointer to the buffer descriptor. The caller provides the storage for the buffer
and the data. The storage must be persistent until the completion routine is called or the
function returned with a status code different to USBLIB_STATUS_PENDING.

Return Value

The function can return one of the following status codes:

USBLIB_STATUS_SUCCESS: The buffer was successfully processed by the
library. The buffer contains valid data. This status is returned if the data was
stored in the FIFO of the hardware before this function has been called. If this
status is returned the completion routine is never called.

USBLIB_STATUS_PENDING: The buffer was submitted successfully to the
library. The library cannot complete the buffer immediately because a DMA
transfer has been started, no data are in the FIFO, or the amount of data in the
FIFO is less than the buffer size and the last packet was no short packet.

USBLIB_STATUS_BUSY is returned because a different buffer is already
submitted to the library. The library can handle only one buffer for each endpoint.

USBLIB_STATUS_INVALID_PARAM is returned if the endpoint is not valid.

Comments

If this function returns with the status USBLIB_STATUS_PENDING the buffer
descriptor and the data memory is owned by the library. The library returns the buffer
descriptor and the buffer to the application by calling the function
USBLIB_TRANSFER_COMPLETION . The pointer to the completion function is
passed in the buffer descriptor.

USB Firmware Library Reference Manual 31

4 Programming Interface

If the function returns with a different status code as USBLIB_STATUS_PENDING the
completion function is never called. This makes sure that the completion function is
called only in the context of a call to the functionUsbLibInterrupt .

If the remaining buffer size is smaller than the size of the received data bytes, the status
USBLIB_STATUS_BUFFER_OVERFLOW is returned to the completion routine. The
Count parameter contains the number of bytes which are received so fare.

The buffer is returned if it is filled completely or if a short packet is received. In the time
interval where the next buffer is prepared the IC can transfer the data from the PC to the
FIFO. This enables a continous data transfer.

See Also

UsbLibAbort (page35)
USBLIB_TRANSFER_COMPLETION (page48)
UsbLibWrite (page33)
USBLIB_DEVICE_EVENT (page45)

32 USB Firmware Library Reference Manual

4 Programming Interface

UsbLibWrite

This function submits a buffer to the driver which transfers data to the PC.

Definition

USBLIB_STATUS
UsbLibWrite (

unsigned char Endpoint ,
USBLIB_BUFFER_DESCRIPTOR*BufferDesc
);

Parameters

Endpoint
This parameter contains the endpoint address with direction bit. For a write request the
direction bit is always 0x80.

BufferDesc
This is the pointer to the buffer descriptor. The caller provides the storage for the buffer
and the data. The storage must be persistent until the completion routine is called or the
function returned with a status code different to USBLIB_STATUS_PENDING.

Return Value

The function can return one of the following status codes:

USBLIB_STATUS_SUCCESS: The buffer was successfully processed by the
library. The data of the buffer has been transferred to the FIFO immediately. If
this status is returned the completion routine is never called.

USBLIB_STATUS_PENDING: The buffer was submitted successfully to the
library. The library cannot complete the buffer immediately because a DMA
transfer has been started or the data cannot completely copied into the FIFO.

USBLIB_STATUS_BUSY is returned because a different buffer is already
submitted to the library. The library can handle only one buffer for each endpoint.

USBLIB_STATUS_ERROR is returned if the endpoint is not valid or the endpoint
is stalled.

Comments

If this function returns with the status USBLIB_STATUS_PENDING the buffer
descriptor and the data memory is owned by the library. The library returns the buffer
descriptor and the buffer to the application by calling the function
USBLIB_TRANSFER_COMPLETION . The pointer to the completion function is
passed in the buffer descriptor.

USB Firmware Library Reference Manual 33

4 Programming Interface

If the function returns with a different status code as USBLIB_STATUS_PENDING the
completion function is never called. This makes sure that the completion function is
called only in the context of a call to the functionUsbLibInterrupt .

If the remaining buffer size is smaller than the size of the received data bytes, the status
USBLIB_STATUS_BUFFER_OVERFLOW is returned to the completion routine. The
Count parameter contains the number of bytes which are received so fare.

The buffer is returned if it is copied completely to the FIFO. In the time interval where the
next buffer is prepared the IC can transfer the data from the FIFO to the PC. This enables
a continous data transfer.

See Also

UsbLibAbort (page35)
USBLIB_TRANSFER_COMPLETION (page48)
UsbLibRead (page31)
USBLIB_DEVICE_EVENT (page45)

34 USB Firmware Library Reference Manual

4 Programming Interface

UsbLibAbort

This function cancels a buffer which was previously successful submitted.

Definition

USBLIB_STATUS
UsbLibAbort (

unsigned char Endpoint ,
USBLIB_BUFFER_DESCRIPTOR** BufferDesc
);

Parameters

Endpoint
This parameter contains the endpoint address with direction bit.

BufferDesc
This parameter contains a pointer to the buffer descriptor which was pending or NULL.

Return Value

The function can return one of the following status codes:

USBLIB_STATUS_SUCCESS: The buffer was successfully canceled.

USBLIB_STATUS_BUSY: The endpoint is busy and can not return the buffer. Wait then
about 2ms and call UsbLibAbort again.

USBLIB_STATUS_ERROR: is returned if the endpoint is not valid or or the endpoint is
stalled.

Comments

If this function is called successful the buffer is aborted and the status
USBLIB_STATUS_CANCELED is set in the buffer descriptor. The Count parameter
contains the number of bytes transferred so fare. The endpoint is not disabled. That
means the data exchange between the FIFO and the PC can continue.

See Also

UsbLibRead (page31)
UsbLibWrite (page33)
USBLIB_TRANSFER_COMPLETION (page48)

USB Firmware Library Reference Manual 35

4 Programming Interface

UsbLibSetStall

This function sets the state of an endpoint to STALL.

Definition

USBLIB_STATUS
UsbLibSetStall (

unsigned char Endpoint
);

Parameter

Endpoint
This parameter contains the endpoint address with direction bit.

Return Value

The function can return one of the following status codes:

USBLIB_STATUS_SUCCESS: The operation was successful.

USBLIB_STATUS_INVALID_PARAM is returned if the endpoint is not valid.

Comments

If the endpoint is set to the STALL state, it returns STALL token on the USB to all
requests. This function should only called if the function is in the configured state and no
buffer is submitted to this endpoint.

See Also

UsbLibClearStall (page37)

36 USB Firmware Library Reference Manual

4 Programming Interface

UsbLibClearStall

This function clears the STALL state of an endpoint.

Definition

USBLIB_STATUS
UsbLibClearStall (

unsigned char Endpoint
);

Parameter

Endpoint
This parameter contains the endpoint address with direction bit.

Return Value

The function can return one of the following status codes:

USBLIB_STATUS_SUCCESS: The operation was successful.

USBLIB_STATUS_INVALID_PARAM is returned if the endpoint is not valid.

Comments

If the endpoint state is cleared the endpoint performs normal data transfers. This function
must be called if an endpoint was set to STALL state by calling the function
UsbLibSetStall. It is not required to call this function during initialization and startup. If
an Clear Feature Endpoint Stall is received the library clears the stall condition
automatically.

See Also

UsbLibSetStall (page36)

USB Firmware Library Reference Manual 37

4 Programming Interface

UsbControlEndpointInterrupt

USB function interrupt routine for control endpoints

Definition

void
UsbControlEndpointInterrupt (

void
);

Parameter

none

Return Value

none

38 USB Firmware Library Reference Manual

4 Programming Interface

UsbDataEndpointInterrupt

USB function interrupt routine for USB control events such SUSPEND

Definition

void
UsbDataEndpointInterrupt (

void
);

Parameter

none

Return Value

none

Comments

This function is called if +Vusb on the USB connector swtich off or switch on, a
SUSPEND,a RESUME,a USB Bus reset,a start of frame or a set configuration request is
detected.

USB Firmware Library Reference Manual 39

4 Programming Interface

UsbFunctionInterrupt

USB function interrupt routine for data endpoints

Definition

void
UsbFunctionInterrupt (

void
);

Parameter

none

Return Value

none

Comments

This function is called if the function has new data or the last data has been successful
sent to the host.

40 USB Firmware Library Reference Manual

4 Programming Interface

4.2 API Call Back Functions

This section describes the API functions, which are called by the embedded application and the
callback functions which are registered by the embedded application.

USB Firmware Library Reference Manual 41

4 Programming Interface

USBLIB_SETUP_EVENT

This function is called, if a class or vendor specific setup request has been received.

Definition

void
USBLIB_SETUP_EVENT(

unsigned char* Setup
);

Parameter

Setup
This field contains the 8 bytes setup data which are passed with each setup request from
the PC to the device. Refer to the USB specification to get more information about the
contents of this data.

Comments

A setup transmission can be started at each time by the PC. A new setup request
terminates each setup request which was submitted earlier. This typically happens if the
PC driver detects a timeout or transmission errors. If the requested length is grater than 0
the embedded application prepares a data buffer and submit it with a call to the function
LibUsbSetupBuffer or it can call the function LibUsbSetupHandshake if the Request is a
OUT Request with the length parameter equal to 0 to enable the handshake phase. See
section "Class and Vendor Requests" for details.

See Also

LibUsbSetupBuffer (page22)
LibUsbSetupHandshake(page24)

42 USB Firmware Library Reference Manual

4 Programming Interface

USBLIB_SETUP_DATA_TRANSFERRED

This function is called, if a data transfer from a vendor or class request which has been started
with a call to the function LibUsbSetupBuffer has been completed.

Definition

void
USBLIB_SETUP_DATA_TRANSFERRED(

unsigned char * Setup ,
unsigned int Count ,
USBLIB_STATUS Status
);

Parameters

Setup
This field contains the 8 bytes setup data which are passed with each setup request from
PC to device. This data field contains the same setup data which have been passed to the
function USBLIB_SETUP_EVENT. The embedded application can use this field to
identify the requests.

Count
This field contains the number of bytes which has been transferred from or to the buffer.

Status
This field contains USBLIB_STATUS_SUCCESS on success or
USBLIB_STATUS_CANCELED if a new setup request has been started before the
current request was finished. Furthermore USBLIB_STATUS_CANCELED can be
returned if an USB reset occurs during a setup request.

Comments

In this callback function the embedded application can call the function
LibUsbSetupBuffer again if FIFO based method is used. If the buffer based method is
used or if the data phase was terminated with a short packet the application must call the
functionLibUsbSetupHandshake.

See Also

USBLIB_SETUP_EVENT (page42)
LibUsbSetupBuffer (page22)
LibUsbSetupHandshake(page24)

USB Firmware Library Reference Manual 43

4 Programming Interface

USBLIB_SETUP_HANDSHAKE_COMPLETE

This function is called after the handshake phase has been completed.

Definition

void
USBLIB_SETUP_HANDSHAKE_COMPLETE();

Comments

This call is for information only. The embedded application can recognize that the setup
request was completed successful. The embedded application must not call
LibUsbSetupHandshake or LibUsbSetupBuffer from this callback function.

See Also

LibUsbSetupBuffer (page22)
LibUsbSetupHandshake(page24)

44 USB Firmware Library Reference Manual

4 Programming Interface

USBLIB_DEVICE_EVENT

This function is called if a device specific event has been detected.

Definition

void
USBLIB_DEVICE_EVENT(

unsigned int Event
);

Parameter

Event
This field contains the event which is one of the following:

USBLIB_RESET a USB reset has been detected. All USB specific actions are
handled by the library. Pending data requests are canceled.

USBLIB_SUSPENDa USB suspend signal has been detected. If the device is
bus powered the embedded application should reduce the required current to
0,5 mA (or 2.5 mA for high power devices). It should stop the clock and enable
the static interrupt for wakeup. If the device is self powered it depends on the
decision of the embeded application if the clock should be stopped.

USBLIB_RESUME a resume signal has been detected. If the clock was turned
off it must be reenabled.

USBLIB_CONFIGURE the device has been configured. The data transfer may
be started.

USBLIB_UNCONFIGURE the device has been unconfigured. Pending requests
are canceled and endpoints are cleared.

USBLIB_ENABLE_REMOTE_WAKEUP the PC has enables the device to
perform a remote wakeup during the next suspend phase.

USBLIB_DISABLE_REMOTE_WAKEUP the PC has disabled the device to
perform a remote wakeup during the next suspend phase.

Comments

This function is called in the context ofUsbLibInterrupt . The embedded application
can call the functions UsbLibRead and UsbLibWrite if the function is in the configured
state,i.e. the event USBLIB_CONFIGURE is signaled. If the events USBLIB_RESET or
USBLIB_UNCONFIGURE are received then the function is always unconfigured.

See Also

USBLIB_CALLBACKS (page54)

USB Firmware Library Reference Manual 45

4 Programming Interface

USBLIB_ENDPOINT_EVENT

This function is called if a endpoint specific event has been detected.

Definition

void
USBLIB_ENDPOINT_EVENT(

unsigned char Endpoint ,
unsigned int Event
);

Parameters

Endpoint
This field contains the endpoint address with direction bit where the event is related to.

Event
This field contains the event which is one of the following:

USBLIB_CLEAR_STALL the PC has detected a error during the data
transmission and sends a Clear Feature Endpoint Stall to clear the error condition.
The library clears the endpoint and restarts the data transmission from the
beginning of the current buffer. The embedded application can cancel the buffer to
force a different behaviour. Note: The PC software may send a Clear Feature
Endpoint Stall at each time, maybe during initialization.

USBLIB_SET_STALL the PC forces the endpoint to go to the STALL state. The
library set the endpoint to STALL and suspends normal data transfer.

See Also

USBLIB_CALLBACKS (page54)

46 USB Firmware Library Reference Manual

4 Programming Interface

USBLIB_START_OF_FRAME

This function is called if a SOF has been received.

Definition

void
USBLIB_START_OF_FRAME(

unsigned int FrameNumber
);

Parameter

FrameNumber
This field contains current frame number.

Comments

The frame number has 11 valid bits. To get this call back the library must be used in
interrupt mode.

See Also

USBLIB_CALLBACKS (page54)

USB Firmware Library Reference Manual 47

4 Programming Interface

USBLIB_TRANSFER_COMPLETION

This function is called, if a read or write operation has been completed.

Definition

void
USBLIB_TRANSFER_COMPLETION(

USBLIB_BUFFER_DESCRIPTOR*BufferDesc
);

Parameter

BufferDesc
This is the same value which was passed to theUsbLibReador UsbLibWrite function.

Comments

The callback function is called for each buffer which was previously successful submitted
to the library. The buffer can be submitted back to the same endpoint with the functions
UsbLibReador UsbLibWrite in the completion routine. To prevent a calling chain the
functionsUsbLibReador UsbLibWrite can called repeatedly from the completion
routine, until the return values from this functions are USBLIB_STATUS_SUCCESS.

See Also

UsbLibAbort (page35)
UsbLibRead (page31)
UsbLibWrite (page33)
USBLIB_BUFFER_DESCRIPTOR (page56)

48 USB Firmware Library Reference Manual

4 Programming Interface

4.3 Structures

This section describes the required structures. Please refer to the documentation of the function to
get as much as possible information.

USB Firmware Library Reference Manual 49

4 Programming Interface

USBLIB_DESCRIPTORS

The USBLIB_DESCRIPTORS structure contains information on the USB descriptors.

Definition

typedef struct _USBLIB_DESCRIPTORS{
USB_DEVICE_DESCRIPTOR*DeviceDescriptor ;
int ConfigurationDescriptorSize ;
USB_CONFIGURATION_DESCRIPTOR*ConfigurationDescriptor ;
int NumberOfStringDescriptors ;
USB_STRING_DESCRIPTOR**StringDescriptors ;

} USBLIB_DESCRIPTORS;

Members

DeviceDescriptor
This field contains a pointer to the device descriptor.

ConfigurationDescriptorSize
This field contains the complete size of the configuration descriptor in bytes.

ConfigurationDescriptor
The configuration descriptor contains the complete description of the interface and
endpoint layout. It consists one configuration descriptor and all required interface, class,
and endpoint descriptors. The correctness of the wTotalLength field in the configuration
descriptor is very important. A invalid value can cause blue screen on Windows.

NumberOfStringDescriptors
This member contains the number of string descriptors.

StringDescriptors
This member contains a pointer to an array of string descriptors. Each string descriptor
starts with a length field (one byte) and a type field (one byte). The length field describes
the size of the complete descriptor in bytes. All characters must be given in UNICODE
format. This means each character is two bytes large. The string is not zero terminated.

Comments

The storage for all descriptors must be provided by the caller and must be permanent. The
descriptors can be stored in the Flash or Ram memory. The descriptors must be defined
correctly and compliant to the USB specification. Otherwise the enumeration on the PC
can fail.

See Also

UsbLibInitialize (page25)
USBLIB_CONFIGURATION (page53)

50 USB Firmware Library Reference Manual

4 Programming Interface

USBLIB_EP_CFG (page52)
USBLIB_CALLBACKS (page54)

USB Firmware Library Reference Manual 51

4 Programming Interface

USBLIB_EP_CFG

The USBLIB_EP_CFG structure contains information on the configuration of one endpoint.

Definition

typedef struct _USBLIB_EP_CFG{
unsigned char EndpointAddress ;
char EndpointType ;
unsigned char Flags ;
unsigned int MaxPktSize ;

} USBLIB_EP_CFG;

Members

EndpointAddress
This field contains the endpoint address with direction bit (0x80).

EndpointType
This field contains the endpoint type. It is one of USB_EP_TYPE_CONTROL,
USB_EP_TYPE_ISO, USB_EP_TYPE_BULK, or USB_EP_TYPE_INT.

Flags
This field contains a or’ed combination of the following flags:

USBLIB_USE_DMA indicates that a DMA channel should be used for the data transfer
from/to this endpoint. It is not possible to specify USBLIB_USE_DMA more than once.

MaxPktSize
This member contains the size of the data packets transferred via USB. It must be equal to
the value in the endpoint descriptor.

Comments

The storage for this data structure must be provided by the caller and must be permanent.
For each used endpoint such a structure must be provided. The parameters must fit the
physical FIFO size.

See Also

UsbLibInitialize (page25)
USBLIB_CONFIGURATION (page53)
USBLIB_CALLBACKS (page54)

52 USB Firmware Library Reference Manual

4 Programming Interface

USBLIB_CONFIGURATION

The USBLIB_CONFIGURATION structure contains information on the configuration of all used
endpoints.

Definition

typedef struct _USBLIB_CONFIGURATION{
unsigned char CfgCount ;
USBLIB_EP_CFG* EpCfg ;

} USBLIB_CONFIGURATION;

Members

CfgCount
This field contains the number of endpoint configuration structure.

EpCfg
This field contains a pointer to an array of USBLIB_EP_CFG structures.

Comments

The storage for this data structure must be provided by the caller and must be permanent.

See Also

UsbLibInitialize (page25)
USBLIB_EP_CFG (page52)
USBLIB_CALLBACKS (page54)

USB Firmware Library Reference Manual 53

4 Programming Interface

USBLIB_CALLBACKS

The USBLIB_CALLBACKS structure contains information on call back functions.

Definition

typedef struct _USBLIB_CALLBACKS{
USBLIB_DEVICE_EVENT* DeviceEvents ;
USBLIB_ENDPOINT_EVENT* EndpointEvents ;
USBLIB_SETUP_EVENT* SetupEvent ;
USBLIB_SETUP_DATA_TRANSFERRED*SetupDataTransferred ;
USBLIB_SETUP_HANDSHAKE_COMPLETE*SetupHandshakeComplete ;
USBLIB_START_OF_FRAME*StartOfFrameEvent ;

} USBLIB_CALLBACKS;

Members

DeviceEvents
This field contains the function pointer to a function which receives device specific
events.

EndpointEvents
This field contains the function pointer to a function which receives endpoint specific
events.

SetupEvent
This field contains the function pointer to a function which receives setup specific events.

SetupDataTransferred
This field contains the function pointer to a function which receives events for a class or
vendor specific data transfer.

SetupHandshakeComplete
This field contains the function pointer to a function which receives events if a setup
transfer is completed.

StartOfFrameEvent
This field contains the function pointer to a function which is called if a Start Of Frame
token has been received.

Comments

The storage for this data structure must be provided by the caller and must be permanent.
Each function pointer has to contain a valid function address or NULL. The embedded
application can pass a NULL pointer to a call back function which is not required. But
even if no call back function is required this data structure must be passed to the function
UsbLibInitialize.

54 USB Firmware Library Reference Manual

4 Programming Interface

See Also

UsbLibInitialize (page25)
USBLIB_DEVICE_EVENT (page45)
USBLIB_ENDPOINT_EVENT (page46)
USBLIB_SETUP_EVENT (page42)
USBLIB_SETUP_DATA_TRANSFERRED (page43)
USBLIB_SETUP_HANDSHAKE_COMPLETE (page44)
USBLIB_START_OF_FRAME (page47)

USB Firmware Library Reference Manual 55

4 Programming Interface

USBLIB_BUFFER_DESCRIPTOR

The USBLIB_BUFFER_DESCRIPTOR structure contains information on a data buffer.

Definition

typedef struct _USBLIB_BUFFER_DESCRIPTOR{
void* DataBuffer ;
unsigned int Size ;
unsigned int ByteCount ;
unsigned int Flags ;
USBLIB_TRANSFER_COMPLETION*CompletionRoutine ;
void* Context ;
USBLIB_STATUS Status ;

} USBLIB_BUFFER_DESCRIPTOR;

Members

DataBuffer
This field contains a pointer to data buffer. The caller must provide the storage. The
storage must be permanent until the buffer is returned.

Size
This member contains the size of the buffer. It is not changed by the library.

ByteCount
This member contains the number of valid bytes in the buffer.

Flags
This member contains 0 or the flag USBLIB_SEND_SHORT_PACKET. The flag
USBLIB_SEND_SHORT_PACKET can be used with the function UsbLibWrite. If the
flag is set the library sends an additional zero length packet if the ByteCount can be
divided by the max transfer size of the endpoint. This flag can be used with bulk or
interrupt endpoints.

CompletionRoutine
This member contains a function pointer to a completion routine. It must not be NULL.

Context
A caller defined context which is passed to the completion routine. Can be NULL;

Status
Returns the status of the operation. It can be one of the following values:

USBLIB_STATUS_SUCCESS:The operation was completed successfully.

USBLIB_STATUS_CANCELED: The PC has sent a Unconfigure or a Reset or
the user has aborted the buffer with UsbLibAbort.

USBLIB_STATUS_TRANSMISSION_ERROR: A hardware transmission error
has been occured. The PC should send a Clear Feature Endpoint Stall request to

56 USB Firmware Library Reference Manual

4 Programming Interface

clear the error condition. Some error conditions cannot recognized by the device.
The error handling in the application should use the Clear Feature Endpoint Stall
which is indicated by the call back functionUSBLIB_ENDPOINT_EVENT .

USBLIB_STATUS_BUFFER_OVERFLOW: A buffer overflow is happen
during a UsbLibRead(). The buffer size was not a multiple of the FifoSize or less
then the transferred bytes in the data structureUSBLIB_EP_CFG. Electrical
noise of the signals can cause this error on some USB interfaces.

Comments

This structure is passed by the embedded application to the functionsUsbLibReadand
UsbLibWrite . The library changes the contents of the Buffer, the ByteCount, and the
Status. It does not change other values.

See Also

UsbLibRead (page31)
UsbLibWrite (page33)
UsbLibAbort (page35)

USB Firmware Library Reference Manual 57

4 Programming Interface

4.4 Error Codes

USBLIB_STATUS_SUCCESS(0x0000L)

The operation has been successfully completed.

USBLIB_STATUS_ERROR (0x0001L)

The operation was completed with a generic error.

USBLIB_STATUS_CANCELED (0x0002L)

The operation was canceled by the API.

USBLIB_STATUS_TRANSMISSION_ERROR (0x0003L)

A transmission error has been occured.

USBLIB_STATUS_BUFFER_OVERFLOW (0x0004L)

The amount of data was larger than the buffer size and the buffer size was not a multiple of the
FIFO size.

USBLIB_STATUS_BUSY (0x0005)

An other buffer is currently queued. Re-submit the buffer later again.

USBLIB_STATUS_INVALID_PARAM (0x0006)

A parameter passed to the function was invalid.

USBLIB_STATUS_PENDING (0x0007)

The request to read from buffer or to write to buffer is pending.

58 USB Firmware Library Reference Manual

5 Demo Application

5 Demo Application

5.1 USB Interface

The demo application uses the USB Function Library to build a USB interface with the following
features:

• One configuration

• One interfase

• Vendor defined class

• Loop data on two bulk pipes

• Loop data on two interrupt pipes

• Read data from an isochronous pipe

• Two vendor requests: Write data and read data to the memory

The hardware is based on a USB1.1. function controller of the MB90F337 with the GLYN evalu-
ation board EVBMB90F335. Other boards are also possible.

To translate the demo application refer to section6. The buffer size for bulk endpoints is 512
bytes and for interrupt endpoints 256 bytes. The isochronous IN transfer buffer has a size of 512
byte. The isochronous buffer contains a additional 2 byte sequence number at the beginning of the
buffer for internal tests.

5.2 Initial Steps

The DEMO application performs the following steps after reset:

• First initialize all interrupt request levels and enable the interrupt.
InitIrqLevels();__set_il(7);__EI();

• Calling the functions DBG_init() to initialize the debug output device if compile with the
DEBUG version. (see dbgprint.*, a powerful trace module and osal.h).

• The function DbgInit() and DbgSetMask() initialize the trace utility and controls the amount
of traces.

• InitBuffer() initializes the user buffer for IN transfers with pattern.

• The function UsbLibInitialize() initialize the USB device and checks the USB configuration.

• If the +4..5V USB power is detected then UsbLibEnable() activate the USB function (3,3V
to D+ with a 1,5k series resisitance).

• After connecting the device to the USB bus, the internal library function
UsbLibInterrupt() is called from the various USB interrupt sources.
TheUsbLibInterrupt() parameters detects which USB event is occured.

USB Firmware Library Reference Manual 59

5 Demo Application

• The main() run then in a infinite loop. First the main() poll gConfigure. The variable gCon-
figure is set from the user event call back function if the event USBLIB_CONFIGURE is
detected. From this point the transfer starts.

• The functions UsbLibRead() and UsbLibWrite() are used to transfer data to or from a end-
point. The transfer starts with the setting of the variable gConfigure. The variable gConfig-
ure is set with the user event USBLIB_CONFIGURE. Do always examine the return value
of the library reading and writing functions to prevent a calling chain. The return value US-
BLIB_STATUS_SUCCESS means that the completion routine is not called and the result
of the operation is stored in the user buffer. See alsoUsbLibReadandUsbLibRead.

• The functions ProcessWriteBuffer() and ProcessReadBuffer() must process the user buffer.
Them checks the buffer status in the buffer descriptor and dump the data buffer.

• Because of that a loop transfer application must first read data from the IN endpoint and
then put them to the OUT endpoint. To do this the variable gBulkReadEnable is set to false
after call of UsbLibRead(). If the read transfer is successfull then ProcessBulkReadLoop()
is called. ProcessBulkReadLoop() writes the received buffer with UsbLibWrite() to the IN
fifo from where the data are sent to the host. If all data are sent ProcessBulkWriteLoop()
is called. To prevent a copy from the user read buffer to the user write buffer the buffer
descriptors for the IN and OUT transfers in the loop transfer application uses the same buffer
(gBulkLoopBuffer) in the buffer descriptor. After sent all data to the Host the application
checks the OUT fifo with UsbLibRead() again. Independent read and/or write applications
are also possible.

5.3 Configuration

The Demo application is configured at compile time with several defines in the file config.h:

• EP1_IN_FLAG, EP1_OUT_FLAGS:
define how the library transfers data between the user buffer and the endpoint FIFOs. See
alsoUSBLIB_EP_CFG.

• USB_ID_VENDOR, USB_ID_PRODUCT:
Product and Vendor ID

Other device characteristics are not available in the DEMO application.

5.4 Performance

This section describes the data throughput. The test setup has the following parameters:

Host: PC: Celeron 2,4Ghz IntelChipsatz
865PE, test program:
USBIOAPP.EXE

USBIOAPP Parameter
IN Pipe, OUT - Pipe:
Size of Buffers: 64000

60 USB Firmware Library Reference Manual

5 Demo Application

Number of Buffers: 5
File size: 2048
USB controller: Intel 82801EB Universal Host

USB chip: Evaluation CPU MB90330
Size of user buffer: 64 or 512 or 2048 bytes
Code optimization: speed
Firmware: release

Endpoint
Type

Configuration User buffer size Data rate in Mbytes/s

Bulk OUT 64 byte 0,405
Bulk OUT 512 byte 0,8
Bulk OUT 2048 byte 0,48
Bulk OUT DMA 64 byte 0,405
Bulk OUT DMA 512 byte 0,448
Bulk OUT DMA 2048 byte 1,018
Bulk IN 64 byte 0,448
Bulk IN 512 byte 0,448
Bulk IN 2048 byte 0,448
Bulk IN DMA 64 byte 0,512
Bulk IN DMA 512 byte 1,024
Bulk IN DMA 2048 byte 1,024

If the demo application is running on a board with the MB90F337 then the following data rates
can be measured.

USB chip: MB90F337
Size of user buffer: depends from the testmode
Code optimization: speed
Firmware: release

Endpoint
mode

Configuration User buffer size Data rate in Mbytes/s

Bulk Loop 512 byte without
DMA

0,393

Interrupt
Loop

poll. interval=2
without
DMA,packetsize=64

512 byte 0,06336

Isochronous
IN

poll. interval=1
without
DMA,packetsize=256

256 byte 0,253

The polling interval of 2 during the interrupt loop means that every 2ms a 64 byte packet is written
to USB and every 2ms is reading an interrupt packet from USB, so the datarate on the USB is 2*
32kb/s = 64kb/s.

USB Firmware Library Reference Manual 61

5 Demo Application

5.5 Program size

The following table give a short summary for the used code and data size of a short USB appli-
cation (two endpoints with a 64 bytes per buffer) with and without trace support. The codesize
depends also from the memory model. The library and the demo application use the medium
memory model.

Demo project
settings

Functionality ROM size in
bytes

RAM size
with stack in
bytes

Debug full functionality with traces 16627 4397
Release full functionality 7789 4035
Release without Vendor Requests 7097 3903
Release without Vendor Requests

and DMA
5963 3645

5.6 Summary

The maximum bandwidth for bulk transfers in both directions is 1.1 Mbyte/s. The maximum
bandwidth for isochronous transfer depends from the pipe FIFO size. To access the maximum
bandwidth a user buffer size between 512 bytes and 2048 bytes and DMA is necessary.

62 USB Firmware Library Reference Manual

6 Configuration and Translation of the Library

6 Configuration and Translation of the Library

The header file func_conf.h in the directory\src\inc contains some defines which configure the
behavior of the library at compile time.

6.1 Hardware depended configurations

• DMA_SUPPORT: Enables the DMA support in the library. Saves memory if not defined.

• VENDOR:Enable the vendor request support. To save memory disable usbvend.c from the
project.

• INTERRUPT_LEVEL: The interrupt level is the level that is used for usb interrupts.

• MAX_ENDPOINTS: Maximum number of endpoints in the library. To save memory
MAX_ENDPOINTS can set to the used endpoint number.

• EP0_MAX_PACKET_SIZE depends from the used USB controller. Full speed devices uses
8, 16, 32, or 64 bytes, the deafult value is 64 bytes.

6.2 Development environment

• Workbench: F2MC-16 Family SOFTUNE Workbench V30L31

• Compiler: fcc907s

• Emulator: MB2147-01 with the evaluation CPU MB90V330A and the USB evaluation
board MB2031-01.

• Target board: GLYN EVBM90F335

The workspace file usbfunc.wsp contains all used project files. The procject files consists of the
files func_demo.prj and func_lib.prj. Func_demo.prj and func_lib.prj contains different targets.
To change a target from a project file first activate the project and then change the target. If the
usb library file are changed then translate the library before translate the demo.

The library project path is\src\mb90\func and the demo programn project path
is \src\mb90\demo

The project configuration files for the library and the for the evaluation CPU are stored in the fol-
lowing locations:
\src\mb90\func\lib\V330chk

The project settings from the library and the demo differs in the C-Compiler defines DBG and
USB_EVA_BOARD, the entries for the file names and the different target MCU’s. The compiler
model is medium.

The sources are stored in the following locations:
library sources:\src\mb90\func\lib\src

USB Firmware Library Reference Manual 63

6 Configuration and Translation of the Library

demo sources:\src\mb90\func\demo\src

All binaries are located in the same directory with different names. The directory is\src\bin with
the subdirectories\chk and\fre.

binary description

\src\bin\chk\func_demoV330.abs debug version of the demo for the evaluation chip MB90V330A
\src\bin\fre\func_demoV330.abs release version of the demo for the evaluation chip

MB90V330A
\src\bin\chk\func_demoF337.abs debug version of the demo for the USB chip MB90F337
\src\bin\fre\func_demoF337.abs release version of the demo for the USB chip MB90F337
\src\bin\chk\func_libF337.lib debug version of the usb library for the USB chip MB90F337

(medium model)
\src\bin\fre\func_libF337.lib release version of the usb library for the USB chip MB90F337

(medium model)
\src\bin\chk\func_libF337.lib debug version of the usb library for the USB chip MB90F337

(medium model)
\src\bin\fre\func_libF337.lib release version of the usb library for the USB chip MB90F337

(medium model)
\src\bin\chk\func_libV330.lib debug version of the usb library for the evaluation chip

MB90V330A (medium model)
\src\bin\fre\func_libV330.lib release version of the usb library for the evaluation chip

MB90V330A (medium model)

64 USB Firmware Library Reference Manual

6 Configuration and Translation of the Library

6.3 Installation

6.3.1 Loading the device binaries

This explains the loading of the binaries on the GLYN evaluation board EVBMB90F335 with the
MCU MB90F337.

Jumper settings:

• JP1: not used, open (TX from UART1 to DB9 connector X2)

• JP2: not used, open (RX from UART1 to DB9 connector X2)

• JP3:during downloading:1-2 (The red programming LED is on)

• JP3:after download:2-3 (The red programming LED is off)

• JP4: 2-3 (1,5k pull up resistor from D+)

• :JP5: open (Mode Pin MD1 = High)

• :JP6: open (+5V for USB Host connector, not used)

• :JP7-JP10: not available

• JP11: 1-2,close

• JP12: 1-2,close

• JP13: 1-2,close

• JP14-JP16: not available

• JP17: 1-2, close

1. Before starting the download set JP3 and check the other jumpers (s.a.jumper settings).
2. Connect the demo board with a USB cable to the PC (USB is needed for the power supply, the
green power LED must go on).
3. Start the Flash utility and open the file func_demoF337.mhx.
4. Press the reset switch on the demoboard.
5. Select the Full Operation from the Flash utility and wait for end of programming.
6. Close the flash utility.
7. Disconnect the Demoboard from USB.
8. Set JP to 2-3.
9. Connect the Demoboard with the USB cable to the PC.

At the third point start the FUJITSU Flash Programmer and connect a free serial COM interface
from the PC with the RS232 connector X1 from the board. The Flash Programmer tool MCU
Programmer 16LX (V01L13 or a higher version) can be downloaded from the FUJITSU home
page http://www.fme.gsdc.de.

USB Firmware Library Reference Manual 65

6 Configuration and Translation of the Library

Note that the target system must have a RS-232C signal driver for communication with the micro-
controller UART. Connect the demo board with a external power of 9-12V or connect the board
with a USB cable with a PC.

Check the settings in the programmer tool (target: MB90F337, Crystal Frquency 6Mhz)
and the SetEnvironment button.
Open the motorola hex file in the directory\src\bin\fre\func_demoF337.mhx. After reset the
MCU press the FullOperation button in the programmer tool. After programming set the mode
pins to normal mode JP3=1-2 (MD0=1, MD1=1, MD2 =0).

6.3.2 USB Device driver Installation

Install usbio_demo. After Installation connect the Demoboard with the PC and install the new
USB device after connection. (see also USBIO Installation Wizard). In the Device Manager the
device "USBIO Device: VID:0x815 PID:0x001" is displayed. If the device is not present check
the USBIO device installation and the device.

6.3.3 Start the Test application

Start the demo90330.exe. Then click start to run the bulk loop transfer. If the device is not found a
error message is displayed. All endpoints on the target board are configured without DMA so the
data rate is about 0,5Mb/s. Only one transfer type at the same time is running.

66 USB Firmware Library Reference Manual

7 Related Documents

7 Related Documents

• Universal Serial Bus Specification 1.1, http://www.usb.org

• Universal Serial Bus Specification 2.0, http://www.usb.org

• USB device class specifications (Audio, HID, Printer, etc.), http://www.usb.org

• USB 2.0, Hrsg. H. Kelm, Franzi’s Verlag, 2001, ISBN 3-7723-7965-6

• USBIO Reference Manual, Version 2.0, http://www.thesycon.de

USB Firmware Library Reference Manual 67

Index

Buffer
Parameter ofLibUsbSetupBuffer , 22

BufferDesc
Parameter ofUSBLIB_TRANSFER_COMPLETION, 48
Parameter ofUsbLibAbort , 35
Parameter ofUsbLibRead , 31
Parameter ofUsbLibWrite , 33

BufferSize
Parameter ofLibUsbSetupBuffer , 22

ByteCount
Member ofUSBLIB_BUFFER_DESCRIPTOR, 56

CallBacks
Parameter ofUsbLibInitialize , 25

CfgCount
Member ofUSBLIB_CONFIGURATION, 53

CompletionRoutine
Member ofUSBLIB_BUFFER_DESCRIPTOR, 56

Configuration
Parameter ofUsbLibInitialize , 25

ConfigurationDescriptor
Member ofUSBLIB_DESCRIPTORS, 50

ConfigurationDescriptorSize
Member ofUSBLIB_DESCRIPTORS, 50

Context
Member ofUSBLIB_BUFFER_DESCRIPTOR, 56

Count
Parameter ofUSBLIB_SETUP_DATA_TRANSFERRED, 43

DataBuffer
Member ofUSBLIB_BUFFER_DESCRIPTOR, 56

Descriptors
Parameter ofUsbLibInitialize , 25

DeviceDescriptor
Member ofUSBLIB_DESCRIPTORS, 50

DeviceEvents
Member ofUSBLIB_CALLBACKS, 54

Endpoint
Parameter ofUSBLIB_ENDPOINT_EVENT, 46
Parameter ofUsbLibAbort , 35
Parameter ofUsbLibClearStall , 37
Parameter ofUsbLibRead , 31
Parameter ofUsbLibSetStall , 36
Parameter ofUsbLibWrite , 33

EndpointAddress
Member ofUSBLIB_EP_CFG, 52

69

EndpointEvents
Member ofUSBLIB_CALLBACKS, 54

EndpointType
Member ofUSBLIB_EP_CFG, 52

EpCfg
Member ofUSBLIB_CONFIGURATION, 53

Event
Parameter ofUSBLIB_DEVICE_EVENT, 45
Parameter ofUSBLIB_ENDPOINT_EVENT, 46

Flags
Member ofUSBLIB_BUFFER_DESCRIPTOR, 56
Member ofUSBLIB_EP_CFG, 52
Parameter ofLibUsbSetupBuffer , 22
Parameter ofLibUsbSetupHandshake , 24
Parameter ofUsbLibInitialize , 25

FrameNumber
Parameter ofUSBLIB_START_OF_FRAME, 47

LibUsbSetupBuffer , 22
LibUsbSetupHandshake , 24

MaxPktSize
Member ofUSBLIB_EP_CFG, 52

NumberOfStringDescriptors
Member ofUSBLIB_DESCRIPTORS, 50

Setup
Parameter ofUSBLIB_SETUP_DATA_TRANSFERRED, 43
Parameter ofUSBLIB_SETUP_EVENT, 42

SetupDataTransferred
Member ofUSBLIB_CALLBACKS, 54

SetupEvent
Member ofUSBLIB_CALLBACKS, 54

SetupHandshakeComplete
Member ofUSBLIB_CALLBACKS, 54

Size
Member ofUSBLIB_BUFFER_DESCRIPTOR, 56

StartOfFrameEvent
Member ofUSBLIB_CALLBACKS, 54

Status
Member ofUSBLIB_BUFFER_DESCRIPTOR, 57
Parameter ofUSBLIB_SETUP_DATA_TRANSFERRED, 43

StringDescriptors
Member ofUSBLIB_DESCRIPTORS, 50

UsbControlEndpointInterrupt , 38
UsbDataEndpointInterrupt , 39
UsbFunctionInterrupt , 40

70

USBLIB_BUFFER_DESCRIPTOR, 56
USBLIB_CALLBACKS, 54
USBLIB_CONFIGURATION, 53
USBLIB_DESCRIPTORS, 50
USBLIB_DEVICE_EVENT, 45
USBLIB_ENDPOINT_EVENT, 46
USBLIB_EP_CFG, 52
USBLIB_SETUP_DATA_TRANSFERRED, 43
USBLIB_SETUP_EVENT, 42
USBLIB_SETUP_HANDSHAKE_COMPLETE, 44
USBLIB_START_OF_FRAME, 47
USBLIB_STATUS_BUFFER_OVERFLOW, 58
USBLIB_STATUS_BUSY, 58
USBLIB_STATUS_CANCELED, 58
USBLIB_STATUS_ERROR, 58
USBLIB_STATUS_INVALID_PARAM, 58
USBLIB_STATUS_PENDING, 58
USBLIB_STATUS_SUCCESS, 58
USBLIB_STATUS_TRANSMISSION_ERROR, 58
USBLIB_TRANSFER_COMPLETION, 48
UsbLibAbort , 35
UsbLibClearStall , 37
UsbLibDisable , 28
UsbLibEnable , 27
UsbLibGetFrameNumber , 30
UsbLibInitialize , 25
UsbLibRead , 31
UsbLibSetStall , 36
UsbLibWakeupPC , 29
UsbLibWrite , 33

WakeupEnable
Parameter ofUsbLibWakeupPC , 29

71

	Table of Contents
	Introduction
	Overview
	Compiler
	Features
	Restrictions

	Architecture
	Typical Program Flow
	Integration of the Library into an Application
	Compile time Configuration
	Library Interrupt Handler
	Synchronization
	Without Operating System
	With Operating System

	Data Transfer and Performance
	Transfer Device to PC
	Transfer PC to Device

	Class and Vendor Requests
	Error Handling
	Request without data phase
	Request with data phase from PC to Device
	Request with data phase from Device to PC

	Hardware Requirements

	Programming Interface
	API Functions
	LibUsbSetupBuffer
	LibUsbSetupHandshake
	UsbLibInitialize
	UsbLibEnable
	UsbLibDisable
	UsbLibWakeupPC
	UsbLibGetFrameNumber
	UsbLibRead
	UsbLibWrite
	UsbLibAbort
	UsbLibSetStall
	UsbLibClearStall
	UsbControlEndpointInterrupt
	UsbDataEndpointInterrupt
	UsbFunctionInterrupt

	API Call Back Functions
	USBLIB_SETUP_EVENT
	USBLIB_SETUP_DATA_TRANSFERRED
	USBLIB_SETUP_HANDSHAKE_COMPLETE
	USBLIB_DEVICE_EVENT
	USBLIB_ENDPOINT_EVENT
	USBLIB_START_OF_FRAME
	USBLIB_TRANSFER_COMPLETION

	Structures
	USBLIB_DESCRIPTORS
	USBLIB_EP_CFG
	USBLIB_CONFIGURATION
	USBLIB_CALLBACKS
	USBLIB_BUFFER_DESCRIPTOR

	Error Codes
	USBLIB_STATUS_SUCCESS (0x0000L)
	USBLIB_STATUS_ERROR (0x0001L)
	USBLIB_STATUS_CANCELED (0x0002L)
	USBLIB_STATUS_TRANSMISSION_ERROR (0x0003L)
	USBLIB_STATUS_BUFFER_OVERFLOW (0x0004L)
	USBLIB_STATUS_BUSY (0x0005)
	USBLIB_STATUS_INVALID_PARAM (0x0006)
	USBLIB_STATUS_PENDING (0x0007)

	Demo Application
	USB Interface
	Initial Steps
	Configuration
	Performance
	Program size
	Summary

	Configuration and Translation of the Library
	Hardware depended configurations
	Development environment
	Installation
	Loading the device binaries
	USB Device driver Installation
	Start the Test application

	Related Documents
	Index

