[hesveoN

Thesycon® Systemsoftware & Consulting GmbH

Fujitsu USB Minihost API-FUMA

MB90330 and MB90335 series

Reference Manual

Version 1.2 June 16, 2005

Thesyco® Systemsoftware & Consulting GmbH
Werner-von-Siemens-Str.-2-98693 lIimenau GERMANY

Tel: +49 3677 / 8462-0
Fax: +49 3677 / 8462-18

e-mail: info@thesycon.de
http://www.thesycon.de

Copyright (c) 2003-2005 by Thesycon Systemsoftware & Consulting GmbH
All Rights Reserved

Disclaimer

Information in this document is subject to change without notice. No part of this manual may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic or
mechanical, including photocopying and recording for any purpose other than the purchaser’s per-
sonal use, without prior written permission from Thesycon Systemsoftware & Consulting GmbH.
The software described in this document is furnished under the software license agreement dis-
tributed with the product. The software may be used or copied only in accordance with the terms
of the license.

Trademarks

The following trade names are referenced throughout this manual:

Microsoft, Windows, Win32, Windows NT, Windows XP, and Visual C++ are either trademarks
or registered trademarks of Microsoft Corporation.

Other brand and product names are trademarks or registered trademarks of their respective holders.

Contents

Contents
Table of Contents 7
1 Introduction 9
2 Overview 11
2.1 Compiler e e 11
2.2 Features. e 11
2.3 Restrictions. 12
2.4 Performance 12
3 Architecture 13
3.1 USBHOST interruptevents and the library. 14
3.2 Integration of the Library into an Application 16
3.3 Compiletime configuration 18
3.4 Libraryinterrupthandler. 18
3.5 Synchronization 18
3.5.1 Withoutoperatingsystem 19
3.5.2 Withoperatingsystem 19
3.6 Data Transferand Performance 19
3.7 SetupRequests 19
3.7.1 ErrorHandling. e 20
3.7.2 Requestswithoutdataphase 20
3.7.3 RequestwithdataOUTphase. 20
3.7.4 RequestwithdataINphase 20
4 Programming Interface 21
4.1 APIFUNctions e 21
UMH_INit 22
UMH_EnumerateDevice. 23
UMH_SetConfiguration 24
UMH_AddENndpoint 25
UMH_RemoveEndpoint. 27
UMH_SetupRequestCpl. 28
UMH_SetupRequest. 29
UMH_AbortSetupRequest 30

USB Minihost Library Reference Manual

Contents

UMH_Transfer e 31
UMH_AbortTransfer. 32
UMH_ResetDataToggleBit 33
UMH_SetPowerState e 34
UMH_GetDeviceState. e 35
4.2 APlcallback functions. 36
UMH_StallExecutionUserCallback. 37
UMH_DEVICE_STATE_CALLBACK 38
UMH_COMPLETION e e e e 39
UMH_STATUS_COMPLETION. e 40
4.3 Enumeration TYPES o o 41
UMH_POWER_STATE e 41
UMH _DEVICE _STATE e e e 42
4.4 ErrorCodes. e 43
UMH_STATUS_SUCCES®OX0000L) v vvo oot 43
UMH_STATUS _ERROROX0001L) 43
UMH_STATUS_BUSY(0x0002L) i 43
UMH_STATUS_INVALID_PARAM (0Ox0003L) 43
UMH_STATUS _OVERRUNOx0004L) 43
UMH_STATUS_TIMEOUT(0x0005L) 43
UMH_STATUS_COMPLETHOX0006L) 43
UMH_STATUS_CRCOOX0007L) . .« v vttt e e e e e 43
UMH_STATUS_STALL(OX0008L) v v vttt 43
UMH_STATUS _DELAYED(Ox0009L) 43
UMH_STATUS_CANCELED(OXO00AL) 44
UMH_STATUS_DATA TOGGLE_MISMATCH(Ox000BL) 44
UMH_STATUS BITSTUFHOX000CL) 44

5 Demo Application 45
5.1 HOSTIinterface. e 45
5.2 Programflow. 45
53 Traces. e e e 46
5.4 Running the demo application 46
5.4.1 Hardwarerequiremenis. 46
5.4.2 Softwarerequirements. 46

USB Minihost Library Reference Manual

Contents

543 Jumpersettings. e 47

544 Programmingo e e e e e e 47

5.4.5 Startingthedemoprogram. 48

6 Configuration and translation of the library 49
6.1 Hardware depended configurations 49
6.2 Developmentenvironment e 49

7 Related Documents 51
Index 53

USB Minihost Library Reference Manual

1 Introduction

1 Introduction

FUMA is a generic Universal Serial Bus (USB) minihost library for the 16-bit FUJITSU MCU
MB90330 and MB90335 series. It covers the entire USB minihost of the micro controller and
provides a convenient way to use the API.

This document describes the architecture, the features and the programming interface of the
FUMA firmware library. Furthermore, it includes instructions for including the library into a
project.

The reader of this document is assumed to be familiar with the specification of the Universal Serial
Bus Version 1.1 and 2.0 and with common aspects of C programming.

USB Minihost Library Reference Manual 9

2 Overview

2 Overview

The USB minihost block is build into the MB90330 micro controller and handles the lower layer
of the USB protocol. The higher layer of the USB protocol must be implemented in the software
of the micro controller. The quality of this software implementation is very important to work
together with several operating systems. By using the FUMA firmware library it is possible to get
the USB host interface up and running without spending the time and the effort of developing a
new USB host firmware.

2.1 Compiler
The FUMA library supports the following C-compiler:

e F2MC-16 Family SOFTUNE Workbench V30L31 with FS907S compiler

2.2 Features

The FUMA library provides the following features:

e initialisation of the minihost
e support of USB 1.1 full speed and low speed devices
e registration of callback functions

e device enumeration including USB bus reset, SET ADDRESS request and setting of maxi-
mum packet size for the control endpoint

e suspend

e resume

e setup requests
e bulk transfer

e interrupt transfer

USB Minihost Library Reference Manual 11

2 Overview

2.3 Restrictions

Some restrictions apply to the FUMA firmware library:
e The minihost library cannot be used if the USB function is used on the MB90330 series at
the same time. The sharing of the FIFO’s of the MCU hardware causes this limitation.
e isochronous transfer is not supported
e supports one USB device at the same time

e does not support Hub devices

2.4 Performance

The maximum bandwidth for bulk transfer is 270 kbyte/s. A higher bandwidth is not possible
because no DMA transfer is available for this I/O-resource. To obtain the maximum bandwidth
you should use the firmware release version. The buffer size should be at least 512 bytes.

12 USB Minihost Library Reference Manual

3 Architecture

3 Architecture

The Embedded Application is the software running on the MB90330 and the MB90335 series.

It uses the FUMA library to communicate via the USB host by an USB function. The FUMA
Library is divided into three parts: the USB host library, the Hardware Abstraction Layer (HAL),
and the Operating System Abstraction Layer (OSAL). The USB host library handles the USB Bus
requests and the data transfer on an abstract level. The HAL performs the access to the registers of
the USB host. The OSAL layer is the interface to the operating system. It requires a mechanism
for synchronization, a debug print function, and some helper functions. It can be easily adapted
to projects without an operating system. The hardware contains the USB related registers and the
physical connection to the USB host connector. This document describes the FUMA library. The
Hardware Abstraction Layer is not described.

Figurel shows the FUMA library architecture.

Embedded Host
Application

User Interface

i Library
USB Host Library = Operating Operating
System System
| Abstraction hig
Hardware Layer
Abstraction Layer
A
Hardware i
USB
USB _HOST HOST
Registers
controller

Figure 1:FUMA Software Architecture

The library does not require any external libraries or function calls out of <OSALdbgp.c>. The
OSAL layer defines a debug print function. A system independent implementation of the print
function is implemented in the file <OSALdbgp.c>. This file requires <stdarg.h>. But the debug
print function can be mapped to any other debug print capability of an existing project. The header
file <usbminihost.h> contains the definition of function prototypes, structures and status codes. It
should be included by the embedded application. The other source code files should be added to
the project of the embedded application.

USB Minihost Library Reference Manual 13

3 Architecture

3.1

USB HOST interrupt events and the library

Device connect event

A connected USB device is detected by the 3,3V on the D+ (full speed device)
or D- line (low speed device). The internal function UmhDevConnect() sets the

USB operation clock and starts the SOF token or keep alive signals. The user is
then informed by the event UMH_EVENT_CONNECT. The device state is set to

UMH_DEVICE_STATE_POWERED .

Device disconnect event
UmhDevRemove() is called if the HOST detects a device removal and the event
UMH_EVENT_REMOVED is signalled to the application.

Device resume signal detection event

To get a resume event the device has to be set into suspend statéMtithSetPowerState

and the parameter UMH_POWER_SUSPENIMH_ SetPowerStatewaits for the end of

the current token and cancels all outstanding transfer requests. Then it stops the SOF token
and puts the USB bus in suspended state. If a remote wakeup or the end of the resume signal
is detected the internal function UmhDevWakeUp() is called and starts the SOF token. Now
the application can submit new transfer requests.

Start of frame event

Every millisecond a SOF interrupt is generated. The SOF interrupt calls the internal function
UmhDevSOFevent(), see also figuBg where all interval counters are decremented. If an
interval counter is zero the scheduler starts the related interrupt endpoint request if active.
Active means that a request was passed to that interrupt endpoint. If an interrupt token is
completed the interval counter is restarted and decremented by the SOF interrupt until zero.

Token completion event

A token completion event occurs when the USB device has sent the handshake token or
an error is detected. In that case the token scheduler (UmhTokenScheduler() in Bjgure

is called. Received data are read from the FIFO and written to the transfer buffer. If the
transfer is not complete the request is released and the next one is submitted to the USB bus.
The completion routinedMH_COMPLETION is called if all data has been transferred.

Token send

First the requested token (SETUP, IN or OUT token) is sent. The host’s fifo's are used to
copy the data for the transfer. If a transaction finishes the scheduler copies the data to the
application buffer if necessary. If not all data has been transferred the scheduler does not
repeat the same request but searches the next available request in the list.

14

USB Minihost Library Reference Manual

3 Architecture

USB events and related library functions

UMH_Transfer()
(This function is
synchronised with
OSALEnter())
i

> Werites the request

Start a request

starts a new request
Y

UMH_COMPLETION()
can start a new request or
signalizes the end of a
request to the main.

request completed

global device
related endpoint
transfer
descriptor list
(this is the
internal EpList
element)

i

Completes the current request

Get the next token

‘ UmhTokenScheduler() ‘ ‘M/

Token complete
UmhDevW akeUp()

Starts the SOF token,
requests must be started
again with user interface .

Resume detected UMH_EVENT_WAKEUP

UMH_EVENT_CONNECT

Device connected \

UMH_DEVICE_STATE_
CALLBACK()

USB Host ‘ ‘ UmhDevConnect() ‘
Interrupt
(USB interrupt
level)
UmhDevRemove() UMH_EVENT_REMOVED

Cancels all pending and

Device removed |
outstanding requests!

Start of Frame

‘ decrement interrupt pipe counter

‘ ‘ UmhDevSOFevent()

Figure 2:USB HOST events and the library

USB Minihost Library Reference Manual

3 Architecture

3.2 Integration of the Library into an Application

Figure3 shows the use of the FUMA library. In the following the use of the library functions is
explained. User defined helper function listed in figBeee omitted. The application must imple-
mentUMH_ StallExecutionUserCallback that is called inside the library to wait for a specified
time. This function must not return before the requested time has passed. It is possible to do
additional work in this function, but the library must not call again.

e At first the application has to call the functiddMH_Init . The application passes the
user event callback functiodMH_DEVICE_STATE_CALLBACK to this routine. The
UMH_DEVICE_STATE_CALLBACK function informs the application about the con-
necting and removing of an USB device.

e The functionUMH_AddEndpoint adds a data endpoint to the library if the application uses
data endpoints.

e If the device is connected the event UMH_EVENT_CONNECT is set and the ap-
plication begins with the device enumeration by callibtMH_EnumerateDevice
UMH_EnumerateDevicesends a USB bus reset, starts the SOF token and set the device
address. The USB device descriptor is requested and the maximum packet size of endpoint
zero is extracted.

e If UMH_EnumerateDevicereturns with UMH_STATUS SUCCESS the application can
communicate with the control endpoint (endpoint zero). To transfer data with data
endpoints the device must be in a configured statdMH_GetDeviceState returns
the value UMH_DEVICE_CONFIGURED if the device is configured. The device
is configured withUMH_SetConfiguration. If UMH_SetConfiguration returns with
UMH_STATUS_SUCCESS the user can start the communication with data endpoints.

e Control endpoint requests including vendor and class requests can be executed with
UMH_SetupRequest

e If the device is configured a data endpoint transfer can be startedUMtH_Transfer .
The application can schedule one transfer per data endpoint. The next data transfer can be
started, if the completion routine is called with status success. In the case of an error, an
error recovery (ResetPipe) is required.

Do always wait for the end of the previous transfer before starting a new one. Another
solution is to start the second data transfer in the completion callback routine.

e The application has to stop the transfer if a device disconnect event is detected. After a
device connection event the device has to begin with the device enumeration.

Figures3 shows the program flow from the point of view of the user application.

16 USB Minihost Library Reference Manual

3 Architecture

Typical program flow of an embedded host application with the
USB host library

Functions to initialise the library void
StateCallBack(unsigned int

recommended application functions: Flags){

InitBuffer(); .

InitIRQLevels(); .

InitTimer(); case

__EIQ; UMH_EVENT_CONNECT:
Library functions: gConnectFlag=TRUE;

DBG_init();// if use traces (Define DBG=1!) .

UMH_Init();

UMH_AddEndpoint(); }
T
|
|
|
I
1
Wait for the connection |
while(1)Y{ |
if('gConnectFlag) { A i i R !
while(!gConnectFlag);
/I start bus signals, set Ep0 max.packet size automaticallay
/land check for LOW or Full speed device!
UMH_EnumerateDevice();
/Imake the device ready for data endpoint transfers
UMH_SetConfiguration();
gBulkOutComplete=TRUE;// user Flag to enable bulk out data transfer
gConfigured=TRUE;//user Flag set to true if no error is occured

}
Data transfer .
hint: BulkOutStartTransfer calls UMH_Transfer(). Flag is set to true,
if(gConfigured && gConnectFlag) { user can start a new transfer

if(gBulkOutComplete) { «—] o
/I start a new transfer
gBulkOutComplete=FALSE;
if(UMH_STATUS_SUCCESS != BulkOutStartTransfer(
gBulkPatternBuffer, BULK_BUFFER_SIZE)) {
gBulkOutComplete=TRUE;// try to start again
}

}
} /1 end while(1)

void BulkOutCompletion(Status, BytesTransferred, Context)
/I check the completion status
if(!Status) {
/I no transfer error
gCurrentWrite+=BytesTransferred; BulkOutCompletion() is called
in the USB interrupt context

A

}
if(Status == UMH_STATUS_CANCELED) {
return;

/I set the user Flag to true to start a transfer
gBulkOutComplete=TRUE; ~~~~ -~~~ ~~" "~~~ ~""~7~~~~"~~7~~ I

Figure 3:Program Flow in the main() context

USB Minihost Library Reference Manual 17

3 Architecture

3.3 Compile time configuration

Some parameters can be defined at compile time. Please refer to the comments in the file
<umh_haldef.h>.

3.4 Library interrupt handler

All USB host specific interrupt functions are implemented in the FUMA library. These functions
are not declared with the __interrupt keyword. They has to be called from a user defined USB
host interrupt handler function, see also <usb_int.c> and <vectors.c> in the demo application. The
IRQ level of the USB host interrupt is defined with USB_INT_LEVEL in <umh_haldef.h>. This
level is set by the internal function UmhHalUsbIntEnable() during library initialisation. To enable
the USB interrupt the interrupt level has to be setto USB_INT_LEVEL+1 or higher. The internal
function UmhLibinterrupt() is called from the interrupt handler function and detects all active
interrupt requests. If USB interrupts are broken by higher interrupts the transfer duration is larger.

3.5 Synchronization

The library has internal data structures and the USB host requires special sequences, which must
not be interrupted. From this point of view the library is not re-entrant. To synchronize the code
of the USB host interrupt handler with the host library interface several methods are used. An
operating system may provide special objects like critical sections or semaphores. To synchronize
code without an operating system typically some or all interrupts are disabled. Each of this method
may have drawbacks to the application.

To understand the synchronization the internal operation of the library is important.

The USB host interrupt calls the internal functionmhLibinterrupt()
UmhLiblInterrupt() then dispatches the event to the correct internal function so the
most library functions runs in the context of the USB Host interrupt.

With the the file <osal.h> the library provides two macros OSALEnter and OSALLeave which are
used to synchronize the library code. Synchronize means that a library function during the run
time can not be interrupted of the USB host interrupt. It is not allowed to call library functions
that wait for an USB event in an interrupt with a higher or equal priority (that would cause to a
deadlock). In the programming interface the allowed caller process context is declared.

The callback functions are running under the protection of the OSALEnter and OSALLeave
macros. So callback functions are always synchronised. In some callback functions it is use-
ful to call a library function again. A synchronised library function can call another synchronised
library function. The code is synchronised until after the execution of the last call (if make nested
calls) of the OSALLeave macro.

The OSALEnNter macro has to be inserted directly after the end of the local variables because the
macro self defines a local helper variable.

The function reference describes the various process context during the run time. The macros can
be adapted in one of the following ways.

18 USB Minihost Library Reference Manual

3 Architecture

3.5.1 Without operating system

The OSALEnNter macro stores the state of the global interrupt flag or the interrupt level (depends
on the used controller) and disables the interrupt. The OSALLeave macro restores the value
of the interrupt enable flag or the interrupt level. It is possible to disable all interrupts and to
disable only interrupts with a same or a lower priority. This depends from the compiler define
SYNC_EQUAL_LOWER_INTS.

Depending from the value of the compiler define SYNC_EQUAL_LOWER_INTS not all inter-
rupts are disabled after a call to a library function.

If SYNC_EQUAL_LOWER_INTS is zero then all interrupts are disabled if a library function is
called from the application. This method has the advantage that library functions can also be called
from interrupts with a higher priority as the USB host interrupt.

If the compilers define SYNC_EQUAL_LOWER_INTS has a value unequal zero then only inter-
rupts with an equal or a lower priority are disabled if a library function is called. This method has
the advantage that time critical interrupts are not disabled during execution of a library function
and has the disadvantage that a library function can not be called from a interrupt routine with a
higher priority as the USB host interrupt.

A call of the library functions from the main() is with both synchronize methods possible.

3.5.2 With operating system

The user must change the macros OSALEnter and OSALLeave in <osal.h> if it is not possible to
use this with the Operating system. The Enter function requests a synchronization event from the
operating system. The synchronization event is required to allow to be entered multiple times by
the same thread. If the object is in use and requested by a different thread the current thread has to
be suspended. The OSALLeave macro releases the synchronization event.

3.6 Data Transfer and Performance

For data endpoints the FUMA library supports a mode to achieve a high data throughput. The
library can handle one transfer buffer per endpoint. The application provides the buffer for the
data transfer. The buffer size may be larger than the FIFO size of the endpoint. On an IN transfer
the library completes the buffer if it is completely filled or if a short packet is received. To avoid
buffer overruns the buffer size should be a multiple of the FIFO size. The time increase with the
transfer buffer size until the request is completed.

3.7 Setup Requests

The FUMA library supports all available setup requests including class or vendor specific requests
by the functiondJMH_SetupRequestCplandUMH_SetupRequest These functions realize the
setup request that consists of 3 phases (Please refer to the USB specification for more details):

e setup phase,

e data phase (optional),

USB Minihost Library Reference Manual 19

3 Architecture

e handshake phase.

The setup phase is always running. All bytes of this setup packet can be defined by the application.
Furthermore the setup contains the direction and length of the data phase. If the length field is set
to zero the data phase is skipped.

The data phase is limited to 64 KB.

The handshake phase allows the device to acknowledge or stall the request. If the device cannot
handle the setup request or the data transferred in the data phase, it can return an error by stalling
the endpoint.

3.7.1 Error Handling

The application can abort each setup request WithH_AbortSetupRequest That means the
sequence setup, data, and handshake can be interrupted. A not completed token in one of the setup
stages cannot be interrupted. The user has to wait for the end of the current token.

3.7.2 Requests without data phase

The library calls the functio®MH_SetupRequestand passes the 8 bytes of the setup to the
embedded application. The direction bit in the bmRequestType field and the wLength field has to
be zero. The parameter buffer has to be NULL to prevent a data phase. If the handshake status is
acknowledgedJMH_SetupRequestreturns. IfUMH_SetupRequestCplis used the completion
callback routine is called.

3.7.3 Request with data OUT phase

The library has to provide a transfer buffer for the data phasklH_ SetupRequestis called

with a valid buffer pointer and the length field in the setup request must not exceed the size of
the parameter buffer. After all bytes have been sent to the device and the handshake status is
acknowledgedJMH_SetupRequestreturns. IfUMH_SetupRequestCplis used the completion
callback routine is called. If the device responds with NAK'’s for a determined time during data or
handshake phase and no bus error is occurred the functions return UMH_STATUS_TIMEOUT.

3.7.4 Request with data IN phase

The request direction has to be set to one and the setup length field is set to the data length and
has to be less or equal to the maximum buffer size. The returned length can be less or equal to the
length field in the setup buffer.

20 USB Minihost Library Reference Manual

4 Programming Interface

4 Programming Interface

4.1 API Functions

This section describes the API functions, which are called by the embedded application.

USB Minihost Library Reference Manual 21

4 Programming Interface

UMH_Init

Initialise the USB Host circuit.

Definition
void
UMH_Init (
UMH_DEVICE_STATE_CALLBACKeviceState
);

Parameter

DeviceState
Device State notification handler. This callback function is always called from the USB
interrupt context.

Comments
UMH_Init registers the device state notification handler. This function has to be called

one time during initialisation. No device related actions are done. Do not call this
function in the USB interrupt context.

See Also

UMH_DEVICE_STATE_CALLBACK (page39)

22 USB Minihost Library Reference Manual

4 Programming Interface

UMH_EnumerateDevice

Enumerate the USB device.

Definition

UMH_STATUS

UMH_EnumerateDevice (
unsigned int Address
UMH_STATUS_COMPLETIONEompletionFunction
);

Parameters

Address
USB Device address (must not be zero!)

CompletionFunction

Optional callback completion function. The callback function is always called in the
process context of the caller before UMH_EnumerateDevice finishes.

Return Value

The function returns one of the following status codes:

USBLIB_STATUS SUCCESS if successful,

UMH_STATUS_TIMEOUT if a timeout occurred during a HOST operation,
UMH_STATUS_INVALID_PARAM if a parameter was invalid,
UMH_STATUS_ERROR if the device is in disconnect or suspend state,
UMH_STATUS_STALL if the endpoint zero stalled a request.

Comments

After the device event UMH_EVENT_CONNECT is received the application has to call

UMH_EnumerateDevice. The function first starts the SOF token makes a USB bus reset
and set the device address. Then the control endpoint maximum packet size is queried. If
the returned status is successful then all control endpoint related functions could be used.

Do not call this function in the USB host interrupt context or in an interrupt context that
has a higher or the same priority as the USB interrupts.

See Also

UMH_STATUS_COMPLETION (page40)

USB Minihost Library Reference Manual 23

4 Programming Interface

UMH_SetConfiguration
Send a configuration request and reset the FIFOs and data toggle bits in the device.
Definition

UMH_STATUS
UMH_SetConfiguration (
unsigned char ConfigurationValue ,

UMH_STATUS_COMPLETIONEompletionFunction
);

Parameters

ConfigurationValue

If the value is zero then the device is unconfigured and the device state is set to
UMH_DEVICE_ADDRESSED.

CompletionFunction

Optional callback completion function. The function is always called in the process
context of the caller before UMH_SetConfiguration finishes.

Return Value

The function returns one of the following status codes:
UMH_STATUS_SUCCESS if successful,

UMH_STATUS_INVALID_PARAM if the configuration value is unequal zero and the
device is configured or the value is zero and the device is unconfigured,
UMH_STATUS_ ERROR if a communication error occurs.

Comments

Do not call this function in the USB host interrupt context or in a interrupt context that

has a higher or the same priority as the USB interrupt. This function waits always for a
end of the operation.

See Also

UMH_EnumerateDevice(page23)
UMH_STATUS_COMPLETION (page40)

24 USB Minihost Library Reference Manual

4 Programming Interface

UMH_AddEndpoint

Adds an endpoint except the control endpoint to the device.

Definition

UMH_STATUS

UMH_AddEndpoint (
UMH_HANDLE*Handle ,
unsigned char EndpointAddress
unsigned int FifoSize
unsigned int Interval
UMH_COMPLETION*CompletionFunction

);

Parameters

Handle
Caller provided parameter that returns handle to the endpoint.

EndpointAddress
Valid device endpoint address with direction bit. This value depends from the endpoint
descriptor.

FifoSize
The fifo size of the used endpoint address. This value is part of the endpoint descriptor.

Interval
Polling interval in ms. Set the interval to zero for bulk endpoints and greater than O for
interrupt endpoints. For interrupt EP’s this value is part of the EP descriptor.

CompletionFunction
Pointer to the transfer completion function that is called if a transfer on that endpoint has
been completed. The completion function is called in the USB interrupt context. If the
transfer is aborted withMH_AbortTransfer the context of the CompletionFunction is
the same context whekdMH_AbortTransfer is called.

Return Value

The function returns one of the following status codes:
UMH_STATUS_ SUCCESS if successful,
UMH_STATUS_INVALID_PARAM if too many endpoints has been added.

Comments

A call to this function is allowed after UMH_Init() was called. It is also possible to
remove an endpoint with the functi&¥MH_RemoveEndpoint Do not call this function

USB Minihost Library Reference Manual 25

4 Programming Interface

in the USB host interrupt context or in an interrupt context that has a higher or the same
priority as the USB interrupt.

See Also

UMH_RemoveEndpoint (page27)
UMH_AbortTransfer (page32)
UMH_STATUS_COMPLETION (page40)

26 USB Minihost Library Reference Manual

4 Programming Interface

UMH_RemoveEndpoint

Remove a data endpoint from the internal list.

Definition

UMH_STATUS

UMH_RemoveEndpoint (
UMH_HANDLE*Handle
);

Parameter

Handle

Valid endpoint handle. After the function returned the handle is invalid.
Return Value

The function returns one of the following status codes:
UMH_STATUS_ SUCCESS if successful,
UMH_STATUS_ ERROR for an invalid handle.

See Also

UMH_AddEndpoint (page25)
UMH_Transfer (page31)

USB Minihost Library Reference Manual 27

4 Programming Interface

UMH_SetupRequestCpl
Submit a setup request together with the dedicated callback completion function.
Definition

UMH_STATUS

UMH_SetupRequestCpl (
unsigned char* Setup|8]
unsigned char* Buffer ,
UMH_COMPLETION*CompletionFunction
);

Parameters

Setup[8]

Setup packet. The buffer length is given with byte 7 and 8. The direction of the data phase
is given with bit 0x80 of the first byte. The caller is responsible to send valid setup
packets. Do not use this function for SetAddress and SetConfiguration request.

Buffer
Data buffer or NULL if no data should be transferred.

CompletionFunction
User defined data transfer completion function.

Return Value

The function returns one of the following status codes:
UMH_STATUS_SUCCESS if successful,

UMH_STATUS_ERROR if the device is not connected or suspended,
UMH_STATUS_ BUSY if another request is still pending, the request is not submitted.

Comments

The number of transferred byte in the data phase is returned in the parameter
BytesTransferred of the completion function. Do not call this function in the USB host

interrupt context or in an interrupt context that has a higher or the same priority as the
USB interrupt.

See Also

UMH_AbortSetupRequest(page30)
UMH_EnumerateDevice(page23)

28 USB Minihost Library Reference Manual

4 Programming Interface

UMH_SetupRequest

Submit a setup request without the use of a callback function.

Definition

UMH_STATUS
UMH_SetupRequest (
unsigned char* Setup([8]
unsigned char* Buffer
unsigned int* BytesReturned

);

Parameters

Setup[8]

Setup packet. The buffer length is given with byte 7 and 8. The direction of the data phase
is given with bit 0x80 of the first byte. The caller is responsible to send valid setup
packets. Do not use this function for SetAddress and SetConfiguration request.

Buffer
Data buffer or NULL if no data should be transferred.

BytesReturned

Caller provided parameter that returns the number of bytes successfully transferred in the
data phase.

Return Value

The function returns the following status codes:
UMH_STATUS_ SUCCESS if successful,

UMH_STATUS_ BUSY if another request is still pending, the request is not submitted,
UMH_STATUS_ERROR if the device state is invalid,

UMH_STATUS_TIMEOUT if a timeout occurred. The length of the timeout is
determined by the define TIMEOUT_EPO_TRANSFER.
Other errors are returned if an communication error occurs.

Comments

After return the request has been completed. Do not call this function in the USB host

interrupt context or in an interrupt context that has a higher or the same priority as the
USB interrupt.

See Also

UMH_ AbortSetupRequest(page30)
UMH_EnumerateDevice(page23)

USB Minihost Library Reference Manual 29

4 Programming Interface

UMH_AbortSetupRequest

Abort the current Setup request.

Definition

UMH_STATUS
UMH_AbortSetupRequest ();

Return Value

The function returns the following status codes:

UMH_STATUS_ ERROR - if currently no request is pending,

UMH_STATUS_ SUCCESS - if successful,

UMH_STATUS_DELAYED - if the token from this request is pending the request cannot
aborted at once, the completion routine is called to a later time.

Comments

This function aborts the last submitted setup request. Only setup requests that have a
completion routine can be aborted.

See Also

UMH_SetupRequestCpl(page28)

30 USB Minihost Library Reference Manual

4 Programming Interface

UMH_Transfer

Perform a read or write request on a bulk or interrupt pipe.

Definition

UMH_STATUS

UMH_Transfer (
UMH_HANDLHandle ,
void* Context
unsigned char* Buffer
unsigned int BufferSize

);

Parameters

Handle
endpoint handle.

Context

User specific context pointer. This pointer is passed to the completion routine without
changes.

Buffer
Pointer to the transfer buffer provided by the application.

BufferSize
Size of the buffer.

Return Value

The function returns the following status codes:
UMH_STATUS_SUCCESS - if sucessfull,

UMH_STATUS_ERROR - The request could not be submitted because of an invalid
device state.

UMH_STATUS_BUSY - another request is still pending, the request is not submitted.

Comments
If all data has been transmitted, a short packet is received or a transmission error occurred

the completion function is called. Only one transfer per endpoint is allowed at the same
time. This function can be called inside a completion function to start the next transfer.

See Also

UMH_AddEndpoint (page25) UMH_AbortTransfer (page32)

USB Minihost Library Reference Manual 31

4 Programming Interface

UMH_AbortTransfer

Aborts the current data transfer.

Definition

UMH_STATUS
UMH_AbortTransfer (
UMH_HANDLEHandle

);

Parameter

Handle
Endpoint handle.

Return Value

The function returns the following status codes:

UMH_STATUS_ SUCCESS - if successful,

UMH_STATUS_ ERROR - if currently not request is pending,
UMH_STATUS_DELAYED - if the completion routine is called at a later time.

Comments

If returns with success the completion function has been called.

See Also

UMH_Transfer (page31)

32

USB Minihost Library Reference Manual

4 Programming Interface

UMH_ResetDataToggleBit

Reset the data toggle bit for the specified endpoint.

Definition
void

UMH_ResetDataToggleBit (
UMH_HANDLEHandle

);
Parameter

Handle
endpoint handle

Comments
Call this function if no request is pending on this endpoint. The function has to called if
the application sends a clear feature endpoint stall request.

See Also

UMH_Transfer (page31)
UMH_AddEndpoint (page25)

USB Minihost Library Reference Manual 33

4 Programming Interface

UMH_STATUS_INVALID_PARAM

UMH_SetPowerState

Set the USB bus power state.

Definition

UMH_STATUS
UMH_SetPowerState (
enum UMH_POWER_STATHEowerState

);

Parameter

PowerState
Power state.

Return Value

The function returns the following status codes:

UMH_STATUS_SUCCESS - if successful,
UMH_STATUS_INVALID_PARAM - invalid power state or if the device is not
connected or the device is not suspended and should be resumed.

Comments

If the device is first suspended and then disconnected from the USB bus at first a resume
and then a remove event is detected. These events are also sent to the embedded host
application. Do not call this function in the USB host interrupt context or in an interrupt
context that has a higher or the same priority as the USB interrupt. This function waits
always for the end of the operation withMH_ StallExecutionUserCallback

See Also

UMH_GetDeviceState(page35)
UMH_POWER_STATE (page4l)

34 USB Minihost Library Reference Manual

4 Programming Interface

UMH_GetDeviceState
Return the current device state.
Definition

void
UMH_GetDeviceState (

enum UMH_DEVICE_STATE*DeviceState
unsigned int*

Flags
);
Parameters
DeviceState

Caller provided parameter that receives the device state
Flags

Caller provided parameter that returns any combination (bit-wise or) of the following
values:

UMH_STATE_FLAG_SUSPEND

If this flag is set the device has been suspended in the state returned by the
parameter DeviceState.

See Also

UMH_SetPowerState(page34)
UMH_DEVICE_STATE (page42)

USB Minihost Library Reference Manual 35

4 Programming Interface

4.2 API callback functions

This section describes the API functions, which are registered by the embedded application.

36 USB Minihost Library Reference Manual

4 Programming Interface

UMH_ StallExecutionUserCallback

This function is called if a UMH function is called and the library has to wait in that function for
the end of a operation. The function only runs in the user process context.

Definition
void
UMH_ StallExecutionUserCallback (
unsigned long time
);
Parameter
time

time the function has to wait, in 0.1 millisecond units

Comments

This function is called by the library API functions that run not in the USB interrupt
context.The function has to be implemented by the embedded user application. The
function must not return before the requested time is elapsed. It can do additional work
but should not call the library again.

See Also

UMH_EnumerateDevice(page23)
UMH_SetConfiguration (page24)
UMH_SetupRequest(page29)

USB Minihost Library Reference Manual 37

4 Programming Interface

UMH_DEVICE_STATE_CALLBACK

This function is called if a device specific event has been detected.

Definition

void
UMH_DEVICE_STATE_CALLBACK
unsigned int Flags

);

Parameter

Flags
Any combination of the following events that has been detected:

UMH_EVENT_REMOVED if a device disconnect event has been detected. The
library handles USB specific actions. Pending data requests are cancelled.
UMH_EVENT_CONNECT if a device connect event has been detected.

UMH_EVENT_WAKEUP if a wakeup event has been detected. A wakeup event
can be triggered by a resume signal, a device remote wakeup signal or the
removing of a USB device.

Comments

The function is called in the USB interrupt context. In this function other library
functions can be called, except the following:

e UMH_EnumerateDevice
e UMH_SetConfiguration
¢ UMH_SetupRequest

¢ UMH_SetPowerState

See Also

UMH_Init (page22)

38 USB Minihost Library Reference Manual

4 Programming Interface

UMH_COMPLETION

Transfer completion call back function.

Definition

void

UMH_COMPLETIGN
UMH_STATUSStatus ,
unsigned int BytesTransferred ,
void* Context

);

Parameters

Status

Final status of the operation. The status is UMH_STATUS SUCCESS if successful, an
error code otherwise.

BytesTransferred
Number of successfully transferred bytes.

Context
Context pointer that is associated with the transferred buffer. The context pointer has been
passed by the embedded application to the transfer function.

Comments

This prototype is used for completion callbacks with the functions
UMH_SetupRequestCplandUMH_Transfer. It is possible to call other functions of
the library from this callback function, except the following:

e UMH_EnumerateDevice
e UMH_SetConfiguration
¢ UMH_SetupRequest

¢ UMH_SetPowerState

See Also

UMH_AddEndpoint (page25)
UMH_SetupRequestCpl(page28)

USB Minihost Library Reference Manual 39

4 Programming Interface

UMH_STATUS_COMPLETION

Transfer completion call back function.

Definition

void
UMH_STATUS_COMPLETIQON
UMH_STATUSStatus

);

Parameter

Status
Final status of the operation. The status is UMH_STATUS SUCCESS if successful, an
error code otherwise.

Comments

This prototype is used for completion callbacks with the functions UMH_ResetDevice,
UMH_EnumerateDevice and UMH_SetConfiguration. It is possible to call other
functions of the library from this callback function, except the following:

Do not call the following library functions:

e UMH_EnumerateDevice
e UMH_SetConfiguration
¢ UMH_SetupRequest

¢ UMH_SetPowerState

To avoid calling chains do not cdlMH_SetupRequestCplor UMH_Transfer , if the
completion status of the callback function is not UMH_STATUS_SUCCESS.

See Also

UMH_EnumerateDevice(page23)
UMH_SetConfiguration (page24)

40 USB Minihost Library Reference Manual

4 Programming Interface

4.3 Enumeration Types

UMH_POWER_STATE

The UMH_POWER_STATE enumeration type defines different USB bus power states.

Definition

typedef enum {
UMH_POWER_RESUME
UMH_POWER_SUSPEND
} UMH_POWER_STATE

Entries

UMH_POWER_RESUME
Send a resume signal on the USB bus, wakeup the device.

UMH_POWER_SUSPEND
Set the USB bus to suspended state.

See Also

UMH_SetPowerState(page34)

USB Minihost Library Reference Manual 41

4 Programming Interface

UMH_DEVICE_STATE

The UMH_DEVICE_STATE enumeration type defines values that identify the current state of an
USB device.

Definition

typedef enum {
UMH_DEVICE_DISCONNECT= 0,
UMH_DEVICE_POWERED
UMH_DEVICE_DEFAULT
UMH_DEVICE_ADDRESSED
UMH_DEVICE_CONFIGURED

} UMH_DEVICE_STATE

Entries

UMH_DEVICE_DISCONNECT
Device is disconnected.

UMH_DEVICE_POWERED
Device is connected, powered and the USB bus has a high impedance state.

UMH_DEVICE_DEFAULT
Device has been reset, the USB bus works.

UMH_DEVICE_ADDRESSED
The device is addressed.

UMH_DEVICE_CONFIGURED
The device is configured.

Comments

If the device is configured data transfers can be started with the UMH_Transfer()
function. In the adressed state only control endpoint transfers are allowed.

See Also

UMH_GetDeviceState(page35)

42 USB Minihost Library Reference Manual

4 Programming Interface

4.4 Error Codes

UMH_STATUS_SUCCESS(0x0000L)

The operation has been successfully completed.

UMH_STATUS_ERROR (0x0001L)

The operation has been completed with a generic error.

UMH_STATUS_BUSY (0x0002L)

An other buffer is currently queued. Re-submit the buffer later again.

UMH_STATUS_INVALID_PARAM (0x0003L)

A parameter passed to the function was invalid.

UMH_STATUS_OVERRUN (0x0004L)

A data overrun error has been detected.

UMH_STATUS_TIMEOUT (0Ox0005L)

The operation has been timed out.

UMH_STATUS_COMPLETE (0x0006L)

A library operation has been completed.

UMH_STATUS_CRC (0x0007L)

A CRC error has been detected.

UMH_STATUS_STALL (0x0008L)

A STALL PID has been detected.

USB Minihost Library Reference Manual

43

4 Programming Interface

UMH_STATUS_DELAYED (0x0009L)

The completion routine is called to a later time.

UMH_STATUS CANCELED (0x000AL)

The operation has been cancelled. If the USB device is removed from the HOST or the device
is in the suspended state or a pending request is aborted the library completes this requests with
UMH_STATUS CANCELED.

UMH_STATUS_DATA_TOGGLE_MISMATCH (0x000BL)

A DATA toggle mismatch (DATAO/DATA1L tokens) has been detected.

UMH_STATUS_BITSTUFF (0x000CL)

A bit stuffing error has been detected.

44 USB Minihost Library Reference Manual

5 Demo Application

5 Demo Application

The USB minihost demo application checks the USB port for a USB standard keyboard. If a
standard keyboard is found the application sets a configuration and reads data from the keyboard.
It transfers printable chars to ASCII codes and send it to UART 1 with a baudrate of 19,2 kbaud.
Special keys like cursor moving, functions keys, or numblock keys are not translated.

5.1 HOST interface

The demo application uses the FUMA Library to build a HOST interface with the following be-
haviour.

e Supports low- and full speed keyboard devices.

e The elements of the interface descriptor must contain the values:

— binterfaceClass=3,

— binterfaceSubClass=1,
— bNumEndpoints=1,

— binterfaceProtocol=1.

e The product or vendor ID is not checked.

e Supports removing and connecting of an USB device from the HOST while running.
¢ Reads the endpoint address and the transfer interval from the endpoint descriptor.
e Enables a interrupt IN endpoint transfer.

e No vendor requests are used.

The hardware is based on an USB1.1 Minihost controller MB90F337 with the GLYN evaluation
board EVBMB90F335. It is possible that the software runs on other boards but it is not tested.

How to translate the demo application refer to sec@on

5.2 Program flow

The DEMO application performs the following steps after reset:

e Firstinitialise all interrupt request levels and enable the interrupt. InitPWCTimer() config-
ures the timer for UMH_ StallExecutionUserCallback() and UmhinitUart1() configures the
UART to send ASCII codes. InitlrgLevels() and __EI() control the interrupt flags. InitKbd()
set some global variables.

e UMH_Init initialises the FUMA library.

¢ UMH_RemoveEndpointis called if the device is removed. Then the application waits for
a connection.

USB Minihost Library Reference Manual 45

5 Demo Application

e After the device has been connected the application waits for some milliseconds before call
UMH_EnumerateDeviceis called to start the USB communication with the keyboard de-
vice.

e USBKeyboardDetection() checks the interface- and endpoint descriptor.
If USBKeyboardDetection() returns successfully a data endpoint is added with
UMH_AddEndpoint().

e Before the data transfer from the keyboard can be started the device is set in a configured
state withUMH_SetConfiguration.

e Ifthe device is configured and connected and the last transfer is not completed the data trans-
fer from the keyboard is started with InterruptinStartTransfer() that s Transfer .

e The transfer completion routine IntinCompletion() calls ProcessKbdPacket() to scan the
incoming keyboard packet. If the user presses a key the ASCII code is sent to the UART1
and could be displayed with a terminal program.

5.3 Traces

The library and the demo program contain helpful traces to find out why a device does not work.
The trace interface puts the traces to UARTO from the MB90330. The baudrate is 115200 baud, 8
data bits, 1 stop bit, no parity and no handshake signals. To enable the traces the compiler define
DBG=1 must be set and the debug version of the library has to be used. <config.h> contains
traces that determine which traces are displayed. The define TRACE_LIB_ENABLE is setto 1
to see traces from the library code and the define TRACE_USER_ENABLE is set to 1 to see user
traces. To see only errors and warnings of the library TRACE_ONLY_LIB_ERRORS is setto 1
and to see only errors and warning from the user code TRACE_ONLY_USER_ERRORS is set to
1. With the defines LIB_DBG_MASK and USER_DBG_MASK1 it is possible to add or remove
trace information from the library and the user code.

5.4 Running the demo application

5.4.1 Hardware requirements

e GLYN Demoboard EVBMB90F335 with MBO0OF337
e USB 1.1 keyboard
e USB cable

e Serial RS232 cable (1:1 extension cable male-female, no NULL modem cable)

5.4.2 Software requirements

e binary in the directorybin\fre\host_demoF337.mhx (motorola hex file for MBO0OF337)
e FUJITSU Flash MCU programmer 16LX utility (Version VO1L13 or higher)

46 USB Minihost Library Reference Manual

5 Demo Application

5.4.3 Jumper settings

The section explains the loading of the binaries on the GLYN evaluation board EVBMB90F335
with the MCU MB90F337.

Jumper settings:

JP1: If closed TX from UART1 is connected to DB9 connector X2.
JP2: If closed RX from UART1 is connected to DB9 connector X2.
JP3: during download 1-2 (The red programming LED is on.)
JP3: after download: 2-3 (The red programming LED is off.)

JP4: 2-3 (1.5k pull up resistor from D+)

JP5: open (mode pin MD1 = high)

JP6: open (+5V for USB Host connector, not used)

JP7-JP10: not available

JP11: 1-2

JP12: 1-2

JP13: 1-2

JP14-JP16: not available

JP17: 1-2

5.4.4 Programming

Before starting the download set JP3 to 1-2 and check the other jumpers (see jumper set-
tings).

Connect a free serial COM interface from the PC with the RS232 connector X1 from the
board.

Connect the demo board with a USB cable to the PC or to an external power supply with a
range from 9 to 12V.

If no an external power supply is used a USB connection to a host is needed.

After connecting the board with a power supply both green LED’s and the red LED are on.
Press the reset switch on the demo board.

Open the motorola hex filesrc\bin\fre\host_demoF337.mhx.

Start the flash utility and open the file host_demoF337.mhx.

USB Minihost Library Reference Manual 47

5 Demo Application

e The flash programmer tool MCU Programmer 16LX (VO1L13 or a higher version) can be
downloaded from the FUJITSU home page http://www.fme.gsdc.de.

e Push the button "full operation” in the flash utility and wait for the end of the programming.
e Close the flash utility.

e Disconnect the Demoboard from USB.

e SetJP 3to 2-3.

e Press the reset switch on the demoboard.

e Connect the host connector with a USB function.

Note if use another demo board the circuit must have a RS-232C signal driver for communication
with the microcontroller UART. Set the target microcontroller to MB90F337 and set the crystal
frequency to 6Mhz. If the target MB90F337 is not found the programmer tool must be updated.
Check the COM port number in the SetEnvironment menu.

5.4.5 Starting the demo program

First connect the SUB-D connector X2 with the serial cable and a free RS232-interface. The bau-
drate for UART 1 is 19.2 kbaud. Do always use 1:1 cable male/female, not a NULL modem cable,
with the GLYN demo board. Then start a terminal program (switch off all hardware handshakes
and XON/XOFF). Connect the board with an external power supply. The LED’s LED2 and LED3
should be on. Then connect the USB keyboard with the demo board and press a char key, e.g."s".
The character should now be displayed on the terminal window. If the terminal does not display a
pressed key try to load the debug version of the demo program and check if the host can enumerate
that keyboard. If the keyboard has special interface descriptor entries different from a normal USB
HID-keyboard device then the function USBKeyboardDetection() returns an error.

48 USB Minihost Library Reference Manual

6 Configuration and translation of the library

6 Configuration and translation of the library

The header file <umh_haldef.h> in the source directory contains some defines which configure the
behaviour of the library at compile time.

6.1 Hardware depended configurations

The timeouts are needed to control the USB HOST circuit in situations where the library waits for
events from the HOST circuit.

¢ MAX_ENDPOINTS: defines the maximum numbers of endpoints including the control end-
point.
e TOKEN_RETRY_NUMBER: maximum number of token repetitions before returns

e TIMEOUT_SET_ADDRESS: maximum time in 0.1 millisecond units to wait for the Hand-
shake status during a SET_ADDRESS request

e TIMEOUT_EPO_TRANSFER: maximum time in 0.1 millisecond units for a control end-
point transfer

e TIMEOUT_RESUME_RESET: maximum time in 0.1 millisecond units to wait for the reset
or resume interrupt

e USB_INT_LEVEL: that is the interrupt level of the USB Host interrupts

e EPO_MAX_ PACKET_SIZE: default maximum packet for endpoint zero for the USB HOST
circuit During enumeration the correct value for endpoint zero is set.

The header file <Osal.h> contains two macros for Synchronisation the USB Host interrupts and
the FUMA library interface.

e OSALEnter: Two implementations exist. The first one disables the USB Host interrupt and
all interrupts with a lower or equal level. The second one disables all interrupts.

e OSALLeave: Two implementations exist. The first one restores the global interrupt enable
flag and the second macro restores the interrupt level.

If the Compiler define SYNC_EQUAL_LOWER_INTS is not zero all interrupts are disabled.

6.2 Development environment

e Workbench: F2MC-16 Family SOFTUNE Workbench V30L31
e Compiler: FCC907S

e Emulator: MB2147-01 with the evaluation CPU MB90V330A and the USB evaluation
board MB2031-01.

USB Minihost Library Reference Manual 49

6 Configuration and translation of the library

e Target board: GLYN EVBM90F335

The workspace file usbhost.wsp contains the project for the library and the demo application.
The demo application depends on the library project file host_lib.prj. The demo application has
different targets to build the release and debug version for the MB90V330A and MBOOF337. If
the target is changed in the demo application the associated target in the library is set because of
the dependency from the library.

The library project path i§src\mb90\host\lib and the demo program project path
is \src\mb90\ host demo.

The project settings of the library and the demo differs in the Compiler defines DBG and USB_EVA BOARD,
the entries for the file names and different target MCU's. The compiler model is medium and is
for both projects the same.

The sources are stored at the following locations:
library sources) src\mb90\host\lib\src,
demo sources;src\mb90,hostdemad,src.

All binaries are located in the same directory with different names. The directgsydshin with
the subdirectorieschk and\fre.

binary | description |
\src\bin\chk\host_demoV330.abs debug version of the demo for the evaluation chip MB90V330A
\src\bin\fre\host_demoV330.abs| release version of the demo for the evaluation chip
MB90V330A

\src\bin\chk\host_demoF337.abs debug version of the demo for the USB chip MB90F337
\src\bin\fre\host_demoF337.abs| release version of the demo for the USB chip MB9OF337
\src\bin\chk\host_libF337.lib debug version of the USB library for the USB chip MB90F337

\src\bin\fre\host_libF337.lib release version of the USB library for the USB chip MB9OF337

\src\bin\chk\host_libF337.lib debug version of the USB library for the USB chip MB90F337

\src\bin\fre\host_libF337.lib release version of the USB library for the USB chip MB9OF337

\src\bin\chk\host_libV330.lib debug version of the USB library for the evaluation chip
MB90OV330A

\src\bin\fre\host_libV330.lib release version of the USB library for the evaluation chip
MB90V330A

50 USB Minihost Library Reference Manual

7 Related Documents

7 Related Documents

e Universal Serial Bus Specification 1.1, http://www.usb.org
e Universal Serial Bus Specification 2.0, http://www.usb.org

e USB device class specifications (Audio, HID, Printer, etc.), http://www.usb.org

USB 2.0, Hrsg. H. Kelm, Franzi’s Verlag, 2001, ISBN 3-7723-7965-6

USBIO Reference Manual, Version 2.0, http://www.thesycon.de

USB Minihost Library Reference Manual

51

Index

Address
Parameter ctUMH_EnumerateDevice , 23

Buffer
Parameter odJMH_SetupRequestCpl , 28
Parameter ctUMH_SetupRequest , 29
Parameter cUMH_Transfer , 31

BufferSize

Parameter ctUMH_Transfer , 31
BytesReturned

Parameter cMH_SetupRequest , 29
BytesTransferred

Parameter ctUMH_COMPLETIQIS9

CompletionFunction
Parameter cMH_AddEndpoint , 25
Parameter ctMH_EnumerateDevice , 23
Parameter oUMH_SetConfiguration 24
Parameter ctUMH_SetupRequestCpl , 28
ConfigurationValue
Parameter coMH_SetConfiguration , 24
Context
Parameter ctUMH_COMPLETIQIS9
Parameter cUMH_Transfer , 31

DeviceState
Parameter otUMH_GetDeviceState , 35
Parameter cdUMH_Init , 22

EndpointAddress
Parameter ctUMH_AddEndpoint , 25

FifoSize
Parameter coMH_AddEndpoint , 25

Flags
Parameter otMH_DEVICE_STATE_CALLBACRS
Parameter otUMH_GetDeviceState , 35

Handle
Parameter cUMH_AbortTransfer , 32
Parameter cMH_AddEndpoint , 25
Parameter ctMH_RemoveEndpoint , 27
Parameter ctUMH_ResetDataToggleBit , 33
Parameter ctUMH_Transfer , 31

Interval
Parameter cMH_AddEndpoint , 25

PowerState

53

Parameter ctUMH_SetPowerState , 34

Setup[8]
Parameter oMH_SetupRequestCpl , 28
Parameter ctUMH_SetupRequest , 29
Status
Parameter ot MH_COMPLETIQIS9
Parameter ctUMH_STATUS COMPLETIOM

time
Parameter cJMH_ StallExecutionUserCallback

UMH_AbortSetupRequest , 30
UMH_AbortTransfer , 32
UMH_AddEndpoint , 25
UMH_COMPLETIQIN9
UMH_DEVICE_ADDRESSED

Entry of UMH_DEVICE_STATH2
UMH_DEVICE_CONFIGURED

Entry of UMH_DEVICE_STATH?2
UMH_DEVICE_DEFAULT

Entry of UMH_DEVICE_STATH2
UMH_DEVICE_DISCONNECT

Entry of UMH_DEVICE_STATH2
UMH_DEVICE_POWERED

Entry of UMH_DEVICE_STATH2
UMH_DEVICE_STATE_CALLBACRS
UMH_DEVICE_STATH2
UMH_EnumerateDevice , 23
UMH_GetDeviceState , 35
UMH_Init , 22
UMH_POWER_RESUME

Entry of UMH_POWER_STATHA
UMH_POWER_STATA
UMH_POWER_SUSPEND

Entry of UMH_POWER_STATHA
UMH_RemoveEndpoint , 27
UMH_ResetDataToggleBit , 33
UMH_SetConfiguration , 24
UMH_SetPowerState , 34
UMH_SetupRequestCpl , 28
UMH_SetupRequest , 29
UMH_ StallExecutionUserCallback , 37
UMH_STATUS BITSTUFH4
UMH_STATUS_BUS¥3
UMH_STATUS_CANCELES!
UMH_STATUS_COMPLEHS3
UMH_STATUS_COMPLETIOMN
UMH_STATUS_CR@3

54

, 37

UMH_STATUS DATA_TOGGLE_MISMATEH
UMH_STATUS DELAYE®4
UMH_STATUS ERRO&R
UMH_STATUS_INVALID_PARAM3
UMH_STATUS OVERRUIS

UMH_STATUS STALI43

UMH_STATUS_ SUCCESS
UMH_STATUS TIMEOUZ%3

UMH_Transfer , 31

55

	Table of Contents
	Introduction
	Overview
	Compiler
	Features
	Restrictions
	Performance

	Architecture
	USB HOST interrupt events and the library
	Integration of the Library into an Application
	Compile time configuration
	Library interrupt handler
	Synchronization
	Without operating system
	With operating system

	Data Transfer and Performance
	Setup Requests
	Error Handling
	Requests without data phase
	Request with data OUT phase
	Request with data IN phase

	Programming Interface
	API Functions
	UMH_Init
	UMH_EnumerateDevice
	UMH_SetConfiguration
	UMH_AddEndpoint
	UMH_RemoveEndpoint
	UMH_SetupRequestCpl
	UMH_SetupRequest
	UMH_AbortSetupRequest
	UMH_Transfer
	UMH_AbortTransfer
	UMH_ResetDataToggleBit
	UMH_SetPowerState
	UMH_GetDeviceState

	API callback functions
	UMH_StallExecutionUserCallback
	UMH_DEVICE_STATE_CALLBACK
	UMH_COMPLETION
	UMH_STATUS_COMPLETION

	Enumeration Types
	UMH_POWER_STATE
	UMH_DEVICE_STATE

	Error Codes
	UMH_STATUS_SUCCESS (0x0000L)
	UMH_STATUS_ERROR (0x0001L)
	UMH_STATUS_BUSY (0x0002L)
	UMH_STATUS_INVALID_PARAM (0x0003L)
	UMH_STATUS_OVERRUN (0x0004L)
	UMH_STATUS_TIMEOUT (0x0005L)
	UMH_STATUS_COMPLETE (0x0006L)
	UMH_STATUS_CRC (0x0007L)
	UMH_STATUS_STALL (0x0008L)
	UMH_STATUS_DELAYED (0x0009L)
	UMH_STATUS_CANCELED (0x000AL)
	UMH_STATUS_DATA_TOGGLE_MISMATCH (0x000BL)
	UMH_STATUS_BITSTUFF (0x000CL)

	Demo Application
	HOST interface
	Program flow
	Traces
	Running the demo application
	Hardware requirements
	Software requirements
	Jumper settings
	Programming
	Starting the demo program

	Configuration and translation of the library
	Hardware depended configurations
	Development environment

	Related Documents
	Index

