
DIPLOMARBEIT

A versatile networked embedded
platform for KNX/EIB

ausgef̈uhrt am

Institut für Rechnergestützte Automation
Arbeitsgruppe Automatisierungssysteme

der Technischen Universität Wien

unter der Anleitung von

ao. Univ.-Prof. Dipl.-Ing. Dr. Wolfgang Kastner
und

Univ.-Ass. Dipl.-Ing. Georg Neugschwandtner

durch

Friedrich Praus
Hyrtlgasse 18/22

1160 Wien
Wien, 18.10.2005



Abstract

The deployment of home and building automation systems allows to increase
comfort, safety and security and reduce operational cost. Today such systems
typically follow a hierarchical distributed approach. While control networks in-
terconnect smart sensors and actuators, a backbone network provides the infra-
structure for management tasks. Devices interconnecting these networks have a
strategic role. Especially in the home domain, the integration of various control
and data networks is essential for maximum benefit.

The European Installation Bus (KNX/EIB) is a popular control network de-
signed to enhance electrical installations in buildings. It uses a proprietary twisted
pair (TP) medium to interconnect devices like smart light switches and dimmers.
The objective of this thesis is to design an embedded and versatile platform for
ongoing development in the area of home and building automation systems with a
focus on KNX/EIB TP. Besides two KNX/EIB TP interfaces, it provides RS-232,
USB and Ethernet connectivity. The platform moreover has sufficient processing
power and storage, enabling it to act as a “smart router” or gateway.

The thesis first presents a classification of control network devices. It then
discusses the hardware and software requirements for the desired platform. A
detailed presentation of its design, implementation and operation with respect to
hardware and software follows.

2



Kurzfassung

Der Einsatz von Heim- und Gebäudeautomatisierungssystemen ermöglicht
gesteigerten Komfort, erhöhte Sicherheit und niedrigere Betriebskosten. Solche
Systeme folgen heute in der Regel einem hierarchischen verteilten Ansatz.
Während Automationsnetzwerke intelligente Sensoren und Aktuatoren verbinden,
stellt ein Backbone die notwendige Infrastruktur für Managementaufgaben zur
Verfügung. Ger̈ate, die diese Netzwerke verbinden, nehmen eine strategische
Position ein. Insbesondere im Heimbereich ist die Integration verschiedener
Automations- und Datennetze unabdingbar, um das Potential auszuschöpfen.

Der weit verbreitete Europ̈aische Installationsbus (KNX/EIB) ergänzt die klas-
sische Elektroinstallation im Gebäude durch ein Automationsnetzwerk. Er ver-
wendet ein eigenes Twisted-Pair (TP) Medium um beispielsweise intelligente
Lichtschalter und Dimmer zu verknüpfen. Das Ziel dieser Arbeit ist eine vielseit-
ige Embedded-Plattform zu entwerfen, die für zuk̈unftige Arbeiten im Bereich der
Heim- und Geb̈audeautomation mit Fokus auf KNX/EIB TP herangezogen wer-
den kann. Neben zwei KNX/EIB TP Schnittstellen beinhaltet sie RS-232, USB
und Ethernet. Die Plattform stellt darüber hinaus ausreichend Rechenleistung und
Speicherkapazität zur Verf̈ugung, um als “intelligenter Router” oder Gateway zu
dienen.

Die vorliegende Diplomarbeit klassifiziert zunächst Ger̈ate der Geb̈aude- und
Heimautomation. Nachfolgend werden Hardware- und Software-Anforderungen
für die zu entwickelnde Plattform diskutiert. Eine Präsentation des Designs, der
praktischen Umsetzung und der Anwendung sowohl der Hard- als auch der Soft-
ware bildet den Kernpunkt der Arbeit.

3



Danksagung

Ich möchte mich an dieser Stelle bei allen Menschen bedanken, die mich während
meines Studiums und besonders bei der Erstellung dieser Diplomarbeit begleitet
haben.

Mein besonderer Dank gilt meinen Eltern für die F̈orderung meiner Ausbildung
und ihre sẗandige Untersẗutzung.

Weiters m̈ochte ich meinem Betreuer Wolfgang Kastner sowie Georg
Neugschwandtner für die großartige Betreung und ständige Hilfsbereitschaft
danken.

Vielen Dank an Bernhard Greissing für die Hilfe bei der Platinenbestückung.
Ohne ihn ẅare diese nicht so schnell, einfach und perfekt gelungen. Großen Dank
auch an Oliver Alt f̈ur die sẗandige Hilfe.

Einen herzlichen Dank auch an meine Studienkollegen Woif, Jensi, Benno und
Gerd f̈ur die gegenseitige Unterstützung, abwechslungsreiche Studienzeit und das
Korrekturlesen.

4



Contents

1 Introduction 9
1.1 Home and Building Automation . . . . . . . . . . . . . . . . . . 9
1.2 KNX/EIB overview . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 KNX/EIB device classes and market overview . . . . . . . . . . . 13

1.3.1 Interaction devices . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Routers . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.3 Gateways . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.4 PC-based . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Outlook on remaining sections . . . . . . . . . . . . . . . . . . . 20

2 Interfaces 21
2.1 Serial interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 BCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.2 BIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.3 TP-UART . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 USB interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Introduction to USB . . . . . . . . . . . . . . . . . . . . 27
2.2.2 KNX on USB . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 IP interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 EIBlib/IP . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 EIBnet/IP . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Requirements 45
3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Microcontroller . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.2 Ethernet controller . . . . . . . . . . . . . . . . . . . . . 47
3.1.3 KNX/EIB connection . . . . . . . . . . . . . . . . . . . . 47
3.1.4 USB support . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.5 Additional components . . . . . . . . . . . . . . . . . . . 47

3.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.1 Development . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . 48

4 Hardware 49
4.1 Selection of components . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Microcontroller . . . . . . . . . . . . . . . . . . . . . . . 50

5



4.1.2 Ethernet controller . . . . . . . . . . . . . . . . . . . . . 52
4.1.3 KNX/EIB connection . . . . . . . . . . . . . . . . . . . . 54

4.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.1 PCB design . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Power supply . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.3 MB90F334A . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.4 CS8900A . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.5 RS232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.6 TP-UART . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.7 USB connection . . . . . . . . . . . . . . . . . . . . . . 64
4.2.8 SD/MMC card connection . . . . . . . . . . . . . . . . . 64

4.3 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Software 70
5.1 Initialisation and usage . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.1 Development tools . . . . . . . . . . . . . . . . . . . . . 70
5.1.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Low level firmware . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.1 Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.2 UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.3 TP-UART . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.4 SD/MMC . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.5 CS8900A . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.6 USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.7 Test tools . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Network protocol stacks . . . . . . . . . . . . . . . . . . . . . . 91
5.3.1 IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.2 Webserver . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.3 BASys integration . . . . . . . . . . . . . . . . . . . . . 95
5.3.4 EIBnet/IP . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.5 cEMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.6 Tweety . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Summary and outlook 99

List of Figures 101

List of Tables 103

6



Acronyms 104

References 108

A Appendix 114
A.1 Internet links . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.2 MB90330: Pin description . . . . . . . . . . . . . . . . . . . . . 115
A.3 MB90330: Memory map . . . . . . . . . . . . . . . . . . . . . . 122
A.4 KNXcalibur: Schematic diagram . . . . . . . . . . . . . . . . . . 123
A.5 KNXcalibur: Part list . . . . . . . . . . . . . . . . . . . . . . . . 127
A.6 KNXcalibur: Component placement . . . . . . . . . . . . . . . . 130
A.7 KNXcalibur: Board . . . . . . . . . . . . . . . . . . . . . . . . . 132

7



”Whoso shall pull this Sword forth of the stone Is rightwise king, born of all
England.”

Cram, Ralph Adams, Excalibur: An Arthurian Drama (1893)

Excalibur is considered as one of the most powerful fictional swords.

8



1 Introduction

1.1 Home and Building Automation

Home Automation Systems (HASs) and Building Automation Systems (BASs)
aim at improving interaction and communication between devices typically found
in buildings. The term HAS refers to small-scale installations in the residential
context whereas the term BAS denotes large functional buildings like office build-
ings and hospitals. Requirements, expectations and complexity are different in
both domains, but for both the exchange of control data is a key issue. Small,
sporadically occurring data amounts have to be transferred robustly over long dis-
tances.

The core application area is environmental control with other possibilities be-
ing integrated more and more. Devices potentially participating in HASs and
BASs can be classified according to their function [37]:

• Lighting and window blinds

• Heating, Ventilation and Air conditioning (HVAC) systems, including do-
mestic water heating

• White goods (household appliances), like a washing machine or stove

• Brown goods (audio/video or home theatre equipment, game consoles)

• Communications equipment (intercom system, telephone)

• Information processing and presentation equipment (PCs, tablet PCs, PDA)

• Security and access control

• Safety alarm system

• Elevators and sundry special domains

In an automated building or home, for example, light in a room can be turned
off when nobody is present or be automatically turned on if sensors detect a hu-
man being. Functions of a HVAC system can not only be affected by the current
temperature, but also by other associated factors: A HVAC system can be turned
off in a particular room when a window is opened and turned on again when the
window is shut.

9



Although this classification can be applied to HAS as well as to BAS, differ-
ent priorities due to different importance for integration exist. For BAS the key
driving factor is economic utility. Improved control and regulation of energy con-
suming devices allow to reduce ongoing costs. In a small-scale HAS increasing
comfort, safety and security is decisive and saving of energy is a nice benefit.
Moreover, information and infotainment systems, like the “smart fridge” [64] are
becoming more important.

For both domains central and remote access to the controlled functions is of
concern. A central monitoring and control centre in a BAS can further reduce
costs, by providing services allowing detection, localisation and correction of
faulty conditions at an early stage with minimal effort. In a HAS the “peace
of mind” sense is the driving factor. The user is, for instance, able to find out the
condition of windows (i.e. open/closed) or the alarm equipment without actually
being on site. Refer to [38] for a detailed classification, description and discussion
of the above mentioned groups.
To provide the above mentioned services, the underlying system has to fulfil cer-
tain features. The traditional approach assumes athree-level functional hierarchy,
split into management level, automation level and field level.

The field level forms the lowest part in the hierarchy. This level interacts
directly with the physical environment by either collecting data or affecting the
environment. Typical devices are sensors and actuators. The field level prepares
and preprocesses data which then can be transmitted for further processing to
other nodes.

The automatic control takes place at the automation level: It operates on data
prepared by the field level and provides automatic control, including all kinds of
autonomously executed sequences. Data is collected from the field level, pro-
cessed and transmitted to other nodes.

At management level, information from throughout the entire system is ac-
cessible providing a global view of the whole system. Supervisory control and
management of the automation functions is performed. The management level
may also include logging and backup servers to collect and archive statistical data.
Additionally, interconnections to other networks are also possible at this level.

Horizontal communicationdenotes communication among devices at the same
level. If the data is transmitted between different levels, this is calledvertical com-
munication[65]. Normally automation systems are designed distributed. Commu-
nication is quite often performed in a peer-to-peer manner. The lack of a central
controlling instance avoids introducing a single point of failure and bottlenecks.
It can be observed that the amount of data to be transferred increases at higher

10



levels. At field level the exchange of control data is of major concern. Small
packets have to be transferred and therefore the needed bandwidth (few KBits/s)
is significantly smaller than the bandwidth (several MBits/s) at higher levels. Each
level of the presented three-level hierarchy fulfils a certain function. On the other
hand each device of an automation system implements a particular function. The
trend goes towards “intelligent” devices implementing functionality from more
than one of the presented levels. A smart sensor, for example, implements more
and more functions of the automation level, too. However, it is still not able to
fulfil the requirements of management level. Therefore the three-level functional
hierarchy is implemented as a flatter two-level architecture consisting of control
network and backbone network.

An automation system can consist of many hundred control network devices
interacting with the surrounding and communicating among each other. They
form the lowest part in HAS or BAS hierarchy and perform more and more log-
ical functions. Due to the mass of devices, component prices have to be low and
treatment should be easy: Installation and configuration have to be as simple as
possible. Technologies such as link power1 should be utilised. Earlier, sensors
and actuators were simple and not very powerful. Parameters of a sensor, for in-
stance, have traditionally been preset and fixed in hardware, but due to increasing
processing power and miniaturisation of electronic devices, they are made “intelli-
gent” by equipping them with microprocessors. This allows to alter the behaviour
if necessary. Manifold possibilities arise and great flexibility can be achieved, not
only in the business/industrial domain, but also regarding smart homes. However,
the network stack, messages and overhead still have to be kept small.
Typical representatives of Control Networks (CNs) are the LONWorks (LON)
standard [6, 7, 8] described in [44] and KNX/EIB (see [40, 21]). CNs should
transfer local control data robustly under relaxed timing requirements and over
long distances. They interconnect actuators and sensors at room level. At the
electrical level CNs should permit easy cabling with a flexible network topology.
Furthermore, large cable lengths should be possible. Communication is quite of-
ten performed in a peer-to-peer manner. Limited resources are present at field
level nowadays. Therefore it is not economically feasible to use IP at this low
level yet.
The backbone network is responsible for interconnecting control networks. The
communication system features high bandwidth. Quite often an IP network is
used, frequently employing the Building Automation and Control Networking

1Using link power, communication and power signal are transported via the same cable.

11



Protocol (BACnet) standard [9, 34] (for description see [41, 12]). Devices con-
nected to the backbone network have comparatively high computational power
and form central parts of the system. Refer to [38, 23] for a detailed discussion on
communication systems for building automation and control.
It has to be mentioned, that special care has to be taken concerning safety critical
devices/systems, like fire alarm systems, due to their high dependability require-
ments. A non working or just sporadically working light can be annoying, but no
harm is caused. A malfunctioning fire alarm system in a HAS or BAS can cause
catastrophic consequences. For this reason, safety critical systems are often kept
separate from other building control systems.

1.2 KNX/EIB overview

The European Installation Bus (KNX/EIB) is designed to enhance electrical in-
stallations in HAS and BAS. It is a typical representative of a CN and it is based
on an open specification. Konnex (KNX) is responsible for centrally maintaining
the specification as well as managing Intellectual Property Rights (IPR) concern-
ing the standard and the involved companies. KNX/EIB is well-established in
central Europe, i.e. Germany, Austria and Switzerland. It is found primarily in
large building installations with main application areas being lighting, control of
window blinds and HVAC systems. Due to rather high component prices, the pure
cost-benefit calculation regarding saving of energy does not seem to be economi-
cally feasible in home area [48, 46]. Here increase of comfort, safety and security
is the major reason for using KNX/EIB.

KNX/EIB features a decentralised design. It is a peer-to-peer network system:
Nodes2 communicate directly with each other using a distributed algorithm for
medium access. There are hardly any central control nodes that solely fulfil reg-
ulation functions as, for instance, a Programmable Logic Controller (PLC) does.
In fact, control and working logic is located at every single node. To put it differ-
ently: Every single sensor or actuator implementing the KNX standard is able to
handle network communication as well as implementation of the desired logic on
its own.

A key feature in KNX/EIB is group communication based on a publisher-
subscriber model, allowing to address an arbitrary number of receivers by way of
a single message. A sender uses a logical group address as its destination address.
Receiving stations know their dedicated group (or groups) and can accordingly

2A node can be anything from a simple sensor/actuator to a PC-based management server.

12



ignore or process incoming messages. Hence, a sender does not require informa-
tion about – it cannot even determine – which nodes actually are receivers of a
message. This addressing scheme is present inprocess data exchange. Only for
configuration and management purposespoint-to-point messages are used.

KNX/EIB allows various media. The primary used medium is shielded or
unshielded Twisted Pair (TP) cabling known asKNX TP1. 29 V DC power and
the actual signal are carried by the cable. Data is transmitted at 9600 b/s. Medium
access is controlled using Carrier Sense Multiple Access (CSMA) with bit-wise
arbitration on message priority and node address. TP1 allows a free topology
with cable lengths of up to 1000 m per physical segment. A hierarchical three
or two layer structure is possible using routers. See Section 1.3 for a detailed
classification of devices. Integration of KNX/EIB into existing installations can
be achieved usingpowerlineas communication system. The mains distribution
cables are spread well over the entire building and can constitute a sub-network
to the communication system. Unreliability of the medium, however, requires
sophisticated methods at protocol level. Speed is limited to 1200 b/s respectively
2400 b/s depending on used technology.

To further extend KNX/EIB,KNX Radio Frequency (RF)can be used. A
subband in the 868 MHz frequency band, reserved for short-range devices, is
used. For a detailed description of KNX/EIB refer to [37], for an introduction to
KNX/EIB interfaces refer to Section 2.

1.3 KNX/EIB device classes and market overview

The following section is going to give a brief introduction into KNX/EIB device
classes. Different requirements – technical ones and practical ones –, various
abstraction levels and complexity levels can be considered to divide KNX/EIB
related devices into classes. The position in hierarchy and functions of the de-
veloped hardware should be explained and the requirements like memory, storage
and processing power should be determined and justified.

Table 1 shows a classification consisting of four categories which are most
suitable for this thesis. The following aspects are discussed:

• Devices

• Examples: available devices

• Level: classification according to the three-level functional hierarchy pre-
sented in Section 1.1

13



• Function: general purpose of devices

• Installation domain: location, where devices are typically found

• Processing power

• Memory: volatile memory (e.g. RAM)

• Telegram rate: Average load (e.g. number of packets a device has to be able
to process) under typical operating conditions

• Response time of the device: timing requirements regarding user interaction
(e.g. time between pressing a switch and a light going on)

• Connectivity / network stack: number of required network connections and
size of according network stack(s)

• Storage: permanent storage (for e.g. filter tables, historical data, . . . )

• Application size: complexity and size of corresponding software (e.g. ap-
plication logic in sensors, visualisation tool, . . . )

• User interface: possibilities for users to interact with the system (e.g. light
switch, terminal for PC-based devices, . . . )

• Costs

Furthermore, some state of the art devices and systems will be presented in this
section. A further introduction to home area network technologies (Bluetooth,
Firewire, . . . ) is given in [2].

Class Interaction
devices

Routers Gateways PC-based

Devices sensors, actu-
ators

couplers,
routers

gateways control and
monitoring
systems,
visualisation
systems,
logging
servers

14



Examples 4-way binary
switch, . . .

line-/area
coupler,
EIBnet/IP
router, . . .

ISDN,
Bluetooth,
HTTP, WAP,
Firewire, . . .

Gira Home-
server, . . .

Level field field automation management
Function environmental

control
network
bridging

network in-
terconnection

central
control/main-
tenance

Installation
domain

field/cabinet cabinet cabinet/office office

Processing
power

low low middle high

Memory low low moderate high
Telegram rate low moderate low/moderate high
Response
time

critical critical critical/moderatelow

Connectivity
/ network
stack

single and
small

single and
small / 2 and
moderate

2 or more and
big

2 or more and
big

Storage low low/moderate moderate high
Application
size

moderate low moderate high

User
interface

simple none none/simple complex

Costs low low moderate high

Table 1: KNX/EIB device classification

1.3.1 Interaction devices

Devices belonging to this class provide the function of an automation system. In
KNX/EIB they contain part of the system’s logic and functionality. The domain
of interaction devices is stretched widely. What possibilities do current systems,
especially KNX/EIB offer? HVAC systems have been the first devices to be auto-

15



mated due to resulting lower building energy consumption. Main application areas
are in industrial complexes and business buildings. However, flexible HVAC sys-
tems are finding their ways into the home automation area. Single room controlled
heating, cooling and ventilation solutions are possible and affordable. Artificial
lighting, shading and shutter systems, centrally or de-centrally controlled, can be
realised. Supervision of doors, windows or even Residual Current Device (RCD)
devices can be achieved with simple binary sensors and analysed centrally. What
is more, integration of safety systems such as fire detection sensors, alarm equip-
ments or handicapped emergency call systems is possible. Visit, for example [49]
or [48] for off-the-shelf available devices.

1.3.2 Routers

The catch-all term router is used in this thesis for devices interconnecting net-
works which share the “same protocol”: Routers transfer messages, interpreting
and altering them up to layer three of the ISO/OSI model.

The most primitive routers in KNX/EIB arecouplers. They make the hier-
archical structure of the system possible by connecting electrically independent
parts of an installation for data transfer. Filtering by use of special tables in cou-
plers reduces telegram traffic throughout the installation. In KNX/EIB different
types of couplers are distinguished according to their position in hierarchy and
used medium. Couplers for the same medium (e.g. KNX TP1 - KNX TP1) as
well as couplers for different media (e.g. KNX TP1 - KNX powerline) exist.
Their function, however, is mostly identical and therefore only KNX TP1 - to -
TP1 couplers are discussed.

All types of couplers contain microcontrollers and RAM for filtering tables
and message buffers. Filtering tables can be programmed via software3. Line
repeatershave been used in the original EIB specification (also called TP64) to
extend the maximum line length and maximum number of 64 devices per elec-
trical segment. With the current KNX TP1 specification, up to 255 devices can
be connected to a line and repeaters are only used to extend the line length to up
to 4000m. Different lines are connected byline couplers. Up to 15 lines can be
connected to form a main line. Typically such main lines form a control network
on every floor of a building. By the help ofbackbone couplersup to 15 lines can
be connected to the backbone line.

3Filter tables can be programmed via EIB Tool Software (ETS).

16



It has to be mentioned, that these standard couplers do not overcome the limi-
tations of CNs, which are small bandwidth and short range. To create a high per-
formance backbone more advanced and powerful networks have to be used. Due
to its widespread deployment, IP is commonly used. The first approach was to
tunnel standard KNX/EIB frames in point-to-point IP frames and provide remote
access through the legacyEIBlib/IP (“iETS”) (see Section 2.3.1) protocol. For
this reason special tunnelling routers located at backbone level have been used.
iETS has been replaced by the EIBnet/IP standard (see Section 2.3.2), which is
currently awaiting voting for inclusion into the KNX standard. It addresses point-
to-point tunnelling as well as routing functions and allows local control networks
to be connected by a high performance backbone network. See Section 2 for pro-
tocol descriptions.

Of course, enhanced performance and flexibility do not come for free. First of
all, neither KNX/EIB, EIBlib/IP nor EIBnet/IP do address security issues in order
to keep the protocol simple. So the network has to be separated from the real IP
world or be secured by, for instance, a Virtual Private Network (VPN) connection
(refer to [32] for a detailed discussion). What is more, timing problems arise when
simply extending the network size. Troubles with Medium Access Control (MAC)
as well as other timing constraints circumvent arbitrary extensions. Of course, all
participants in the network must handle the CN protocol.

1.3.3 Gateways

Gateways handle interconnection between different types – meaning that network
protocols differ – of networks. They convert information at application level –
layer 7 of the ISO/OSI model – and hence data mappings between the different
network entities have to be maintained, which obviously is not possible for all
types of messages. Generally it can be stated that this mapping is limited to pro-
cess data exchange (e.g. group communication in KNX/EIB). Gateways allow
integration of many different devices. Connection to brown goods can be realised
with, for example, a Firewire-Echonet home automation network gateway. See
[63] for details. Integration of white goods like washing machines or fridges can
be achieved with, for instance, technologies like serve@home or Miele@home.
Quite often, such gateways are based on a web browser with possible Java or
Flash plugins. In HAS the conceptresidential gatewayis quite common. A single
central gateway forms the basis for a tight integration of all sort of consumer de-

17



vices. It provides access to the outside world by, for instance, ISDN or Ethernet
and solves problems like where devices are located, when devices are connected
or which capabilities devices feature. To put it differently: Residential gateways
provide automatic service detection, support for multiple physical network tech-
nologies and remote management and can therefore also be seen as members of
the PC-based device class. A separator between the two closely related classes
can be drawn regarding the user interface. Gateways typically provide additional
network and protocol interfaces, whereas PC-based systems provide a rich user
interface. Refer to [11] or visit for example [18].

Security is of great concern for gateways because they often connect non-
secure home networks to the “bad” outside world. Various possibilities exist but
the reader is left to his own resources [18, 63, 11, 32]. Of course, gateways also
should provide a simple user interface and should be easy to set up. Hardware
requirements are rather high due to the required processing power and memory4.
Simple KNX TP1 - KNX TP1 couplers with, for example, an 8-bit CPU and with
very limited RAM are not powerful enough. For KNX/EIB a lot of gateways
already exist. See Table 2 for an overview of available devices – from compact
nodes to PC-class related technologies, listed for completeness. For Internet links
see Appendix A.1.

Company Product Function Interfaces EIB inter-
face

ABB Telefon-
Gateway
TG/S 3.1

control via ISDN voice, e-mail,
SMS

integrated

ABB DALI-
gateway
DG/S 8.1

interconnection of up to
128 DALI devices

DALI integrated

Adyna IC.1 DR-
EIB

visualisation and control
via ISDN, Ethernet and
USB

Domoport, HTTP integrated

Amann GmbH EWMS interconnection of BAC-
net devices

BACnet, Ethernet integrated

ASTON GmbH iPort KNX/EIB-ISDN-
Ethernet gateway

SMS, WAP,
HTTP

integrated

b.a.b-technologie
GmbH

eibPort visualisation and control
via ISDN and Ethernet

SMS, WAP, iETS integrated

4Excalibur is a typical gateway. It features a 16 bit CPU with 24 MHz, 384 Kb ROM and
24 Kb RAM.

18



Daetwyler Ca-
bles+Systems

Eiblet one visualisation and control
via Ethernet

SMS, WAP,
HTTP, e-mail

BCU 2,
FM
(Radio
module)

Disch GmbH DISCH
Gateway
IP

visualisation via Ether-
net

iETS, SNMP,
WAP, HTTP,
e-mail

integrated

ELKA Elektronik
GmbH

EIB-
Gateway
RS232/485,
DMX

interconnection of de-
vices (e.g. PLC) via
RS232/485 or of the
DMX512 bus

RS232/485,
DMX

integrated

Hager Th006,
Th007

visualisation and control
via ISDN, Ethernet and
USB

Domoport, WAP,
HTTP

integrated

Albrecht Jung
GmbH & Co. KG

KNX/EIB
Bluetooth-
Gateway

control via Bluetooth Bluetooth integrated

Schlaps&Partner CCEIBSPS PLC for EIB with ISDN
and Ethernet connection

HTTP, iETS integrated

TU-Wien KNXcalibur flexible, embedded KNX
TP1 prototype with Eth-
ernet, USB, RS-232 and
SD/MMC card

EIBnet/IP,
BASys, HTTP

2x inte-
grated

Table 2: KNX/EIB gateways (based on [49] and [48])

1.3.4 PC-based

Gateways usually just provide a connection to a bus but can also perform sim-
ple server tasks like running an integrated web server. Complex visualisation and
user-interfaces, however, are limited to PC-based class devices. They are located
at a central point and obtain their data using vertical communication from all over
the BAS network. Often, LAN technologies are used for this purpose. The ap-
proved way of transporting a protocol over another protocol – like for example IP
over Ethernet or EIBnet/IP – is very suitable and widespread. Central PC-based
access to a BAS allows easier configuration and integration of devices, visuali-
sation of control loops as well as management. Of course, connection points for
remote management or access need to be secured.

19



For KNX/EIB many PC-based solutions exist. As mentioned in Section 1.3.3,
some gateways are very powerful and hence can also be seen as PC-based devices.
They offer similar facilities as the following discussed PC-based devices. In the
HAS domain two representatives of visualisations are readily available on the
market. Domoport [18] is a web based service, where the gateway is located at a
safe place at the provider. The user can login on the website and then a connection
to his/her home is established. This way Domoport certified devices located in the
home can be controlled remotely. Gira homeserver (see Appendix A.1) allows
querying and controlling devices locally on the KNX/EIB bus as well as remote
access through a web portal provided by Gira.

Supervisory Control And Data Acquisition (SCADA) systems, sometimes also
referred to as Centralised Control and Monitoring Systems (CCMSs), were intro-
duced in the business area to allow central processing without having to handle
each device separately and without actually being on site. Possibilities with such
central devices are extensive. Abnormal or faulty conditions can be detected, lo-
calised and corrected at an early stage with minimum effort. Direct access for
corporate management level can be granted, which simplifies data acquisition for
facility management tasks such as cost allocation and accounting. What is more,
historical operational data can be gained to assist in further optimisation of con-
trol loops and saving costs. For business area applications check, for example,
Iphon, NETxEIB or IT-GmbH. See Appendix A.1 for Internet links to the above
mentioned products.

1.4 Outlook on remaining sections

• Section 2 gives an overview of current technologies and interfaces to con-
nect to the KNX/EIB bus.

• Section 3 describes the requirements, constraints and initial thoughts about
the gateway.

• Section 4 depicts the design and outline of the hardware.

• Section 5 outlines the implemented software layers and firmware.

• Section 6 is the place to look for thoughts about further extensions, im-
provements and optimisations.

20



2 Interfaces

This section provides a survey of current technologies and interfaces to connect to
the KNX/EIB bus. Depending on the application, these possibilities have various
advantages as well as downsides. Selection of the appropriate interface depends
on available resources (Central Processing Unit (CPU), memory, . . . ) of the ap-
plication, desired control over the bus and abstraction level. Various protocols
have to be implemented, which differ in complexity (stateful, stateless,. . . ) and
memory requirements. Especially response time requirements of the application
regarding network communication have to be considered.

A typical KNX/EIB device usually consists of three parts:

• Bus Attachment Unit (BAU): Responsible for providing a connection to
the KNX medium. It usually consists of a transmission unit, memory
(Read Only Memory (ROM), Random Access Memory (RAM), Electrically
Erasable Programmable ROM (EEPROM)) and a microcontroller.

• Physical External Interface (PEI): Standardised5 interface providing a well-
known attachment point for interconnection to the BAU. Various modes
of communication exist – from simple digital I/O to synchronous/asyn-
chronous serial protocols.

• Application module: Forms the user visible part of a KNX/EIB device. The
term “application module” covers devices like push buttons, motion sen-
sors, RS232 interfaces or USB interfaces. Depending on the used device, a
different application program can be loaded to the BAU to make the device
work. Various application module types are defined in KNX/EIB, which
can be detected in hardware with the help of a special resistor.

Section 2.1 gives a survey of specified serial interfaces and BAUs. Bus Cou-
pling Unit (BCU) and Bus Interface Module (BIM) (Section 2.1) based solutions
can be used as a stand alone device: Layer 7 of standard ISO/OSI model can be
implemented directly on the device. Simple application modules (sensors, actu-
ators, . . . ) can be connected to the BAU via the PEI as digital or analog I/O.
Due to limited resources on both types of BCUs/BIMs, the associated application
programs have to be kept very small. If the available resources are insufficient,
three possibilities exist to interconnect own applications using the BAUs: RS232

5The interface is standardised in hardware as well as in basic transport protocol. 21 different
types are specified.

21



Figure 1: KNX TP1 BAUs

is discussed in Section 2.1. It is continuously used due to its simplicity regarding
implementation. Section 2.2 gives an introduction to USB and the KNX on USB
protocol and Section 2.3 describes standardised IP interfaces.

2.1 Serial interfacing

For this section only the asynchronous serial protocols of the PEI and the RS232
interfaces as application modules or their corresponding counterparts (on e.g. TP-
UART) are relevant. Response time, protocol and hardware requirements will be
discussed in a way that allows the appropriate BAU for an application like this
platform to be selected. Moreover, the actual external messages being transported
via the PEI are presented. All external messages together form the External Mes-
sage Interface (EMI), for which currently the versions EMI 1, EMI 2 ([40] Part
3/6/3) and common External Message Interface (cEMI) ([40] AN033) exist. They
differ in layer access management6, available services and service encoding. The

6Layer access management allows an application to directly access a KNX communication
layer (application layer, network layer, . . . ).

22



cEMI format is intended to be used for the next generation of KNX devices and
will not discussed here.

To connect the BAUs via Universal Asynchronous Receive Transmit (UART)
to the external user application, two possibilities are common:

1. TTL logic level: The BAUs can be integrated into the user application and
be directly connected to the hardware. TTL logic level is used.

2. RS232: The BAUs are connected via a serial cable. EIA-232, also known as
RS232 forms a widespread and common standard [20]. A RS232 level con-
verter needs to be attached to the UART and communication can take place.
Operating Systems (OSs) support RS232 communication via the COM in-
terface. Speed is limited, for KNX/EIB communication, however, it is quite
sufficient.

Table 3 gives an overview about capabilities of the different BAUs. Details are
discussed in Section 2.1.1, Section 2.1.2 and Section 2.1.3.

BCU 1 / BIM111 BCU 2 / BIM 113 TP-UART
layer 1 access ✗ ✗ ✓

layer 2 raw access r r/w r/w
layer 7
support-standalone

✓ ✓ ✗

UART interface ✓ ✓ ✓

wires 5 3 2 / 3
required response time
for com. partner at serial
interface

<3ms7 <3.3ms <2 - 2.5ms

EMI 1 support ✓ ✓ ✗

EMI 2 support ✗ ✓ ✗

cEMI support ✗ ✗ ✗

Table 3: Comparison TP1 bus attachment units

7To achieve a constant transfer rate of 9600 bps, a response time of<1 ms is required for
toggling the CTS/RTS lines.

23



2.1.1 BCU

The Bus Coupling Unit (BCU) is a well-defined BAU fulfilling the specified stan-
dard in ([40] Part 09/04/01). It serves as a modular mounting platform for appli-
cation modules and may contain a specific, rather simple application program or
just serve as a bus interface. In any case, an OS handling part of the KNX/EIB
communication is present. On the one hand this simplifies bus access but on the
other hand the user may not have the desired control over the bus. BCUs usually
are intended to be flush mounted and inserted into wall-boxes.
Two different BCU types are defined. TheTP1 BCU 1features a MC68HC05B6
or compatible type CPU running at 2 MHz with 176 bytes RAM, 256 bytes EEP-
ROM and 5936 bytes ROM.

It supports the serial asynchronousPEI type 16protocol to transfer messages
between the external user application and the BAU’s communication stack. A 5-
wire connection with the lines RxD, TxD, CTS, RTS and 0 V is used. The protocol
consists of four phases:

1. Hardware handshake - communication request: The communication request
is a request/response protocol making use of the RTS and CTS lines. The
sender initiates a connection by setting the RTS line to 0 and waiting for the
receiver to lower the CTS line. Then data is transmitted. This handshake
takes place on each octet transfer.

2. Software handshake - transfer of length octet: This handshake takes place
on the first octet exchange and is used for determining the communication
direction. Both communication partners transfer the length of the data re-
quested to send or FFh, if no data needs to be exchanged. In case of simul-
taneous requests, the BAU is considered as master.

3. Data exchange: The communication initiator sends its data octets and the
receiver responds in parallel with 00h octets at speed of 9600 bps (8 data
bits, no parity bit, one stop bit).

4. Pause: After transfer both communication partners have to wait for a 3 ms
timeout.

Overall communication speed in PEI type 16 protocol is controlled by help of the
hardware handshake. The individual octets, however, are transferred at a fixed
speed of 9600 bps. Apparently no hard response time requirements are present.
Only the line timeout of 3 ms has to be detected. The data exchange process

24



implicates that no duplex transfer of messages is possibly, meaning that a com-
munication partner can either receive or transmit at a time, but not both.

Messages transferred via the BCU 1 PEI are inEMI 1 format, where the actual
message format depends on the used PEI type. In EMI 1 any KNX protocol layer
can be switched on or off, so that the desired layer can be accessed directly. This
is achieved, by writing directly to the BCU’s “system status” memory location
(1 byte) with aPC SetValue.req or A Memory Write.req . It has to be
mentioned that only some combinations of layer selections make sense and that
some layers have to be turned on to make, for instance, the internal user applica-
tion work. Activating the bus monitor, which passes every KNX/EIB frame to the
PEI, disables the user application and object servers.
The TP1 BCU 2uses a MC68HC05BE12 CPU running at 2.4576 MHz. It has
384 bytes RAM, 991 bytes EEPROM and 11904 bytes ROM. It is connected to
the KNX/EIB via a FZE 1066 transceiver and is fully compatible to the BCU 1.
All BCU 1 services, including PEI type 16, are supported.

BCU 2 supports thePEI type 10, allowing usage of the standardised FT1.2
(subset of [33]) protocol or a manufacturer specific protocol, which then needs a
download of the appropriate counterpart to the BAU. FT1.2 provides reliable data
transmission and allows data flow in both directions. It uses a 3-wire connection
with the lines RxD, TxD and 0 V. Transmission is performed with 8 data bits and
1 stop bit with even parity. The transmission rate can be selected. Communication
flow is controlled with a software send/confirm service: After transmission of a
message, the receiver should respond with a positive confirm frame or with a
negative confirm frame. Only after reception of such a message, the sender is
allowed to send further messages. No critical timings are present.

PEI type 10 uses theEMI 2 format. It fully includes EMI 1 services and further
extends them. Message destination is dependent on a static redirection table. In
normal mode all messages are directed to their default destination (link layer mes-
sages to link layer, application layer messages to internal user application, . . . ).
With the help ofPEI Switch.req messages this layer access can be remapped,
to transfer desired messages to the PEI instead of their default destination. The in-
ternal user application is then disabled. One type of service is of special interest:
The L Plain Data.req allows raw data to be transmitted to the KNX/EIB,
giving full access to the bus.

25



Figure 2: KNX TP1 standard data frame (from [37])

2.1.2 BIM

The name Bus Interface Module (BIM), equally to the name BCU, is used for
devices complying fully with the standard in ([40] Part 09/04/02). BIMs are
designed for piggyback use to be directly mounted on Printed Circuit Boards
(PCBs), and hence they have no housing. TheBIM M 111 corresponds to the
TP1 BCU 1 and offers the same features. It has an integrated transformer module
and a controller. TheBIM M 113corresponds to the BCU 2. It uses a transformer-
less transceiver and the MC68HC05BE12 CPU. On both types of BIMs only a
partially implemented PEI connector is present.

2.1.3 TP-UART

The Twisted Pair - Universal Asynchronous Receive Transmit (TP-UART) Inte-
grated Circuit (IC) is a transceiver, which supports connecting layer 2 devices like
microcontrollers, smart sensors, actuators or any other types of applications to the
KNX/EIB TP1. The host controller can either be directly connected or optionally
connected via optical couplers. Communication to the host controller is realised
with a UART interface. It has a 64 byte telegram buffer and there are no critical
timing requirements during transmission using the UART. The protocol format
(i.e. message interface) is native KNX TP1 (see Figure 2), tunnelled in specific
TP-UART frames. The TP-UART consists of an analog part (transceiver) and a
digital part (protocol engine), allowing two different types of operation:

• Analog mode: This mode allows direct control of the EIB bus level. The
TP-UART functions as a transceiver and only the analog part of the IC is
working. The host has immediate control over the high and the low levels
of the TP1 network, meaning that the RxD and TxD pins of the host are
directly logically related to the bus level. Bit timing has to be implemented
by the host.

26



• Normal mode: Both parts, analog and digital, are working. The host can
communicate with the IC using the following constraints and protocol: The
baud rate is 9600 bps or 19200 bps, depending on hardware configuration.
The telegram structure is 1 start bit – 8 data bits – 1 parity bit – 1 stop
bit. Each data byte transmitted to the TP-UART is prefixed with a control
byte. Telegrams from EIB bus are transmitted transparently to the host,
which has to detect the end of a telegram after a receive timeout of 2 -
2.5 ms. The TP-UART allows busmonitor mode and it supports the host
with the Immediate Acknowledgement (IACK) service, used for confirming
reception of a KNX/EIB telegram on the same electrical segment: IACKs
ensure that an addressed device has received a message and is processing it.

For a detailed discussion of the device refer to specification [68].

2.2 USB interfacing

This section describes the protocol to connect a KNX USB Interface Device to
KNX tools like ETS over USB. A summary of required and relevant parts of [74]
is given, nevertheless the reader should be familiar with the USB specification.
KNX on USB describes the tunnelling of the KNX frame formats EMI 1, EMI 2
and cEMI over USB frames. Discovery and self-description mechanisms as well
as the establishment of communication links of USB are utilised.

2.2.1 Introduction to USB

The Universal Serial Bus (USB) evolved from the needs of an easy to use, expand-
able, low-cost, flexible, robust and fast bus to interconnect many different devices
to a PC. Real-time data, such as voice, audio and video as well as “slow” human
interface devices like keyboards are possible. Transfer rates of up to 480 Mb/s can
be achieved.

27



Figure 3: USB device classes (from [74])

A USB systemconsists of USB interconnect, USB devices and a USB host.
Currently USB devices are broken up into:

• Hubs, providing additional USB attachment points

• Functions, providing capabilities to the system

USB hubsform the basis for the plug-and-play architecture of USB. They simplify
USB connectivity from the user’s point of view and expand single attachments
points to multiple attachment points. A hub consists of a high speed upstream
port, connected to another hub or host and several downstream ports. Architec-
ture allows transmission at high speed at upstream port, even if full/low-speed
devices are connected at downstream ports.
Functionsare devices that are plugged into a port of a hub and are able to transmit
or receive data over the USB. Typical functions can be seen in Figure 3 and are,
for instance, keyboards or mice.

28



Figure 4: USB topology (from [74])

Each USB system consists of exactly oneUSB host. The USB Host is re-
sponsible for detection of attachment and removal of USB devices, management
of USB standard control and data flow, collection of status and activity statistics
as well as control of the electrical interface including the provision of a limited
amount of power for USB devices. To provide one or more attachment points, the
root hub is integrated within the host system.

The USB connects USB devices with the USB host. TheUSB bus topologyis a
tiered star with hubs in the centres of each star (see Figure 4). Each wire segment
is a point-to-point connection between either the host and a hub or function, or
between a hub connected to another hub or function.

To move data across the USB, an interaction between various layers is re-
quired. Refer to ([74] Section 5) for detailed information about physical and
firmware requirements of the host and device. Here thedata flow modelrequired
for the implementer will be presented. From a logical view, USB devices seem
to be connected directly to the root port of the USB host. The different USB
functions are presented to application developers and they can attach their client
software to them: A so called pipe-endpoint model is used for that. The physical

29



Figure 5: USB pipe-endpoint concept

link of the USB is divided into several logical links. Each logical link is rep-
resented as an endpoint featuring its own buffer/FIFO memory. A logical USB
device appears to the system as a collection of endpoints. These endpoints are
grouped into sets that form an interface, which in turn are the view to the func-
tion. See Figure 5 for illustration.

Endpoint 0 is associated to pipe 0 and is the Default Control Pipe, being
present in every USB device. The USB System Software uses this endpoint to
initialise, configure and manage the logical device. Client software uses pipe bun-
dles and endpoint sets to manage an interface. Data is transferred from the buffer
on the host to the endpoint on the device upon request of the client software. The
Host Controller then packs the data, coordinates bus access time and moves data
over the USB.
USB defines fourtransfer types:

• Control transfers: Bursty, non-periodic, host software-initiated request/re-
sponse communication

• Isochronous transfers: Periodic, continuous communication, typically time-
relevant information, guaranteed bandwidth, no retry in case of error,
bounded-latency

• Interrupt transfers: Low-frequency, bounded-latency communication

• Bulk transfers: Non-periodic, large-packet bursty communication, guaran-
teed delivery but no guarantee on bandwidth or latency

30



The use of a certain transfer type and hence device class is not affected by the
kind of application, but by the demands of the application concerning the under-
lying communication system. Devices sharing the same transport requirements
can also share a single class driver because of this segmentation. Video applica-
tions, for instance, make use of isochronous transfers whereas Human Interface
Devices (HIDs) have different and much simpler requirements and therefore use
interrupt pipes. Combinations of multiple classes are also possible. Applications
with data requirements outside this specification must provide their own drivers
and class specification.

2.2.2 KNX on USB

To connect KNX/EIB to the USB ([40] AN037), two main goals have been aspired
to:

• Support of only one USB Device Class to minimise compatibility problems
and implementation effort

• Support of a widespread and standardised USB Device Class with host
drivers available

The Human Interface Device (HID)class has been selected to be supported by
KNX system tools. Host drivers for nearly all OS exist and hardware components
are available for implementing the USB device side. Main characteristics of the
USB 1.1 HID Class are interrupt transfers and maximum transfer unit of 64 octets,
which are sufficient for KNX on USB. The HID Class uses two pipes – the default
control pipe and an interrupt pipe – and at least 3 endpoints. The control pipe
is used for standard USB requests like transferring USB control and class data,
transmitting data when polled by the HID class driver and receiving data from the
host. The interrupt pipe is used for receiving asynchronous data from the device
as well as transmitting low latency data to the device. The interrupt out endpoint
at the device is optional for HID class devices. If defined, data from the host is
transmitted to this endpoint. However, if it is not defined, data is transmitted via
the control endpoint. For KNX on USB the interrupt out endpoint at the device is
mandatory. See Table 4 for details.

31



Pipe Endpoint Transfer Type FIFO/Buffer
length

Description

Control Pipe EP0 In Control 8 octets Standard USB
Requests

EP0 Out Control 8 octets
Interrupt Pipe EP1 In Interrupt 64 octets KNX data trans-

fer (tunnelling)
EP1 Out Interrupt 64 octets KNX local device

management

Table 4: KNX HID USB class interface

In the Interrupt Pipe data is transferred in packets8 with a maximum length of
64 octets. Requests longer than 64 octets should be split up into more than one
USB HID frame. In the following, theKNX HID frame formatwill be discussed
(also see Figure 6). A report frame consists of theKNX HID Report Header
and theKNX HID Report Body. The header consists of theReport ID, which
can be used by the HID Class host driver to distinguish incoming data. If a de-
vice has only one input, output and feature report structure, this prefix can be
neglected. For KNX on USB, however, it is used and has a fixed value of 01h.
The sequence numbershould always start with 01h for a KNX frame tunnelled
via USB. If a KNX frame exceeds the maximum length of the KNX HID report
body (61 octets), it is transmitted in multiple reports and the sequence number is
incremented for every following report. Currently, the maximum number of KNX
octets is 255 octets. Hence, the biggest sequence number used is five. Reports
with unexpected sequence numbers should be ignored by the receiver. Thepacket
typeis used to determine the position of a report in a report sequence: A logical
OR over the three least significant bits identifies a packet (see Figure 6). If the
length of the report is, for instance, smaller than 61 octets. packet type value is
03h (0011b = start and end packet) because one frame is sufficient for transporting
all octets.Datalengthdefines the size of the KNX HID report body.

The KNX HID report body consists of a transfer protocol header, only present
in the start packet, and the USB transfer protocol body. Theprotocol version
octet of the header is currently fixed to ‘0’ with a resultingheader lengthof 08h.

8Also called reports (HID Spec Glossary [74]): A data structure returned by the device to the
host (or vice versa). Some devices may have multiple report structures, each representing only
a few items. For example, a keyboard with an integrated pointing device could report key data
independently of pointing data on the same endpoint.

32



The body lengthis the size of the EMI frame plus one octet for message code.
Since the extended frame format on TP1 allows 255 octets for KNX frames, the
total USB transfer body can be greater than 255 and therefore two octets for body
length are present. To identify the transported protocol, theprotocol ID is used.
Specification allows transporting of KNX, M-Bus and BatiBus frames as well as
bus access server features. The latter will be discussed in the next paragraph.EMI
ID encodes the transported EMI type. EMI 1, EMI 2 and cEMI, the future single
frame format, are supported.Manufacturer codeshould be 0000h for a KNX link
layer tunnel. In case of not fully complying to the specification of protocol stated
in protocol ID field, the own manufacturer’s KNX member ID should be filled in.
The timeout for KNX tunnelling is 1 second, meaning that the device receives a
frame, transmits it to KNX medium and sends an acknowledgement within this
period. If the tunnelled EMI format is not supported by the device, it is free to
neglect the frame or give an error code.

For successfully connecting and recognising a KNX USB device, several pa-
rameters are of concern. Every device has a vendor ID and a product ID. These
parameters are part of the USB device descriptor, which can be read by the USB
host via the default control pipe. The vendor ID is a 2 byte identifier assigned by
USB Implementers Forum. Companies developing USB devices can apply for an
own ID or reuse existing IDs via OEM agreements. The product ID is a unique
identifier assigned by the manufacturer. For use as a KNX USB device, these pa-
rameters are irrelevant. Furthermore, every device has a iManufacturer part in the
USB device descriptor, which points to a human readable name of the USB de-
vice. This name, for example, shows up in the “New hardware found” dialogue of
the Windows OS. Upon connecting a USB device to a Windows host, the OS reads
its vendorID and theproductID and searches INF files for these parameters
to decide which drivers to load. Devices are grouped into various device classes
by Windows. Konnex association provides the necessary values – GUID, class
name and an additional descriptor9 –, which are stored in the INF file distributed
by the manufacturer with the device. Every device sticking to this interface and
hence belonging to this common class fulfils the requirements to be discovered
and managed by system tools like ETS.

9The class GUID is fixed to{01F95DC2-D064-47bc-83DD-19CE43587D2E} and is handled
internally by Windows. The class name is “KNXNET” and additional descriptors are “Provider-
Name”, “ManufacturerName”, “DeviceDesc” and “DeviceClassName”

33



Figure 6: KNX on USB frame format

34



Implementations not using a cEMI server – like EMI 1 and EMI 2 on BCU 1
or BCU 2 – do not support discovery or management functions. To overcome this
limit, a dedicatedbus access server feature protocolhas been proposed: Features
of a device should be detected and managed separately and stateless by so called
device feature services. cEMI capable devices should also support these messages.
As seen in Figure 6, the bus access server feature uses the protocol identifier 0Fh

of the KNX USB transfer protocol header. The selected device feature service is
identified by the 1 octet field “service identifier”. Possible additional data can be
attached to the end of the whole message. The following feature services, listed
with identifiers, exist:

• Device feature get (01h): This feature is the only confirmed service. A de-
vice feature response should be transmitted within 1 second after reception
of the get request.

• Device feature response (02h): A variable length of data is supported. Length
can be gained from the body length field decremented by one.

• Device feature set (03h): This frame is transmitted exclusively by the bus
access client to set a parameter of the bus access server.

• Device feature info (04h): This frame is transmitted by the server and is not
confirmed by the bus access client.

Currently there are five device features, listed with feature identifier, defined:

• Supported EMI type (01h): This type is used to get the supported EMI
type(s). The value is encoded in 16 bits – bit 0 determines EMI 1 support,
bit 1 EMI 2 support and bit 3 cEMI support. For each supported type, the
corresponding bit should be set to 1. The KNX USB access client should
determine the supported EMI types upon first connect. If the desired EMI
format is not supported, the client should not transmit any tunnelling frames.
If the server supports more than one type, the client should select the desired
format.

• Host device descriptor type 0 (02h): With this feature, the supported local
device management procedures can be obtained. This feature is most useful
for BCU 1 and BCU 2 based KNX USB devices, because cEMI allows
management itself.

35



• Bus connection status (03h): This feature is a one-bit read only value. If
connection to the bus is available, this bit should be 1, otherwise it should
be 0. After change of this value, a device feature info frame should be
submitted by the server.

• KNX manufacturer code (04h): The 2 octet KNX association manufacturer
code should be provided here.

• Active EMI type (05h): Management of the current active EMI type can be
performed with this feature.

For cEMI based KNX USB servers, the default management procedures of cEMI
([40] AN033) server should also be supported.

2.3 IP interfacing

2.3.1 EIBlib/IP

EIBlib/IP (iETS) [62] is the predecessor of EIBnet/IP and has actually been su-
perseded by that protocol. It is discussed here for completeness. EIBlib/IP is an
extension to ETS 2 providing access to the KNX bus via the Internet Protocol (IP)
[58]. ETS 2 acts as a client whereas the EIBlib/IP device, physically connected
to the KNX bus, acts as the iETS server. Communication on top of IP is based
on User Datagram Protocol (UDP) [56] or Transmission Control Protocol (TCP)
[59]. Three different ports are used: Read and Write channel have dedicated ports
called ReadPort and WritePort (default ReadPort is 50001, default WritePort is
50002). All other communication uses the default shared port 50000. All three
ports can be configured using the ETS. Payload of IP packages are frames in
EMI 1 message format, contained in PEI transport messages. Each function call
is packed into a single IP packet and is answered by the server. Byte order is little
endian (Intel-like). The default timeout is 60 seconds with only one function call
allowed at a time. See the following two Tables 5 and 6 for an overview over the
request-response protocol of EIBlib/IP.

The EIBlib/IP server should support the following bus access and configura-
tion functions, listed with function IDs:

• Open (0001h): The open function establishes a local EIB communication
channel on the server, which afterwards is confirmed with a standard re-
sponse telegram.

36



byte 0-3 4-7 8-11 12-. . .
description message size function identifier version parameter values

The request telegram is sent from the client to the server. The protocol version is
currently fixed to 1.0 and is encoded as 0100h.

Table 5: EIBlib/IP request telegram

byte 0-3 4-7 8-11 12-15 16-. . .
description message function success error return

size identifier indicator code values

The response telegram is sent from the server to the client after fully processing
the request. The function identifier must match the one of the request. Success in-
dicator and error code field give information about success or failure of a request.
For a list of error codes refer to [62].

Table 6: EIBlib/IP response telegram

• Close (0002h): This function shuts down the server-side EIB communica-
tion channel.

• Read (0003h): The client uses this function – with the maximum number of
requested bytes as a parameter – to read a telegram from the server. If one or
more telegrams are available, the server should respond immediately with
the oldest message in its queue. If no telegram becomes available within
half of the IP timeout, the server should respond with an empty telegram.

• Write (0004h): After opening and configuring an EIB communication chan-
nel, the client uses this function to send an EMI 1 telegram to the EIB. The
server processes the packet immediately and responds with the actual num-
ber of bytes written.

• SetPar (0005h): To configure a local EIB communication channel, this func-
tion is called by the client with the following parameters: PortName, Bau-
dRate, DataBits, Parity, StopBits, BcuAnswerTimeOut, TelegramTimeOut,
WriteIrpTimeOut and ReadTrpTimeOut. Every iETS server must return
with success, otherwise a communication error occurs at client side.

• IsOpen (0006h): The function checks for an open communication channel

37



at the server.

• Reset (0007h): To reset the internal state of the iETS server, the client can
call this function. No messages are transmitted to the EIB or the IP read
channel.

• GetServerInfo (0008h): Future versions of EIBlib/IP can use different frame
formats than EMI 1. To get the supported EMI types, this function can be
called. The server responds with one of the following two return values:
00000001h for EMI 1 or 00000002h for EMI 2.0 support.

• Identify (0009h): The server responds to this request with its EIBA manu-
facturer code and its MAC address.

2.3.2 EIBnet/IP

EIBnet/IP describes transportation of KNX telegrams on top of IP networks, which
are, due to their widespread deployment, an ideal fast backbone. The main pur-
pose of EIBnet/IP is to expand building control beyond the local KNX bus. EIB-
net/IP is transparent for KNX devices. Remote configuration and operation is
possible via EIBnet/IP servers. Existing Internet Protocols (IPs) [58] are used,
unless their implementation and memory usage requires huge efforts. Address
Resolution Protocol (ARP) [55], Boot Protocol (BootP)/Dynamic Host Config-
uration Protocol (DHCP)10 [19], User Datagram Protocol (UDP) [56], Internet
Control Message Protocol (ICMP) [57] and Internet Group Management Protocol
(IGMP) [15] are mandatory implementations whereas Reverse Address Resolu-
tion Protocol (RARP) or Transmission Control Protocol (TCP) [59] are optional.
An EIBnet/IP server should be connected to an IP medium, being able to transmit
at least twice the bit rate of all connected EIBnet/IP routers ([40] Part 03/08/01).

Until now, for KNX securitywas of minor concern, as any breach of secu-
rity requires physical access to the network wires, which is nearly impossible
in a building. When using an existing data network, however, several security
threats need to be considered. These are, for example, eavesdropping, modifica-
tion or deletion of messages and denial of service attacks. As EIBnet/IP does not
provide any security measures, the underlying network has to be secured by, for
instance, using virtual private networks, local intranet only or using authentication
for opening tunnelling or remote logging connections. Refer to [32] for a detailed

10A server should support a fixed address, configured by ETS, as well as a dynamic address
assignment.

38



discussion on this topic.

Currently there are four service protocols specified in EIBnet/IP. Every EIB-
net/IP device needs to implement at least the basicCore Service. The core spec-
ification defines the packet structure. Moreover, it is responsible for discovery
and self-description of an EIBnet/IP server and for configuring, establishing and
maintaining a communication channel between the client and the server. In con-
trast to EIBlib/IP, EIBnet/IP uses big endian (Motorola-like) byte order.
Figure 7 explains the basic structure and function of the EIBnet/IP server and the
core service. The server provides one well known discovery endpoint11 to the IP
network and one or more service containers. A server should at least support one
control endpoint and one data endpoint12 per KNX connection. If, for example,
the gateway is connected to two different KNX networks, it provides two differ-
ent service containers with both control and data endpoints. An endpoint can be
uniquely addressed with the defined Host Protocol Address Information (HPAI)
structure. HPAI is the necessary data to send EIBnet/IP frames to the communi-
cation partner. For IPv4 the HPAI currently contains the 4 byte IP address and
2 byte port number. For discovery of an EIBNET/IP server, the client sends a
SEARCHREQUESTwith its own discovery HPAI to the system setup multicast
address. Every server receiving the request should respond immediately with a
SEARCHRESPONSEframe for each of its service containers. It is addressed to
the provided client HPAI and should contain the HPAI of the control endpoint. Af-
terwards, the client typically sends aDESCRIPTIONREQUESTto all received
control endpoints using a unicast or point-to-point connection. Servers respond
with a DESCRIPTIONRESPONSE, containing supported protocol, capabilities,
state information and an optional friendly name.

A communication channelis the data endpoint connection of an EIBnet/IP
client and an EIBnet/IP server. It is established by the client for services requiring
a point-to-point connection like, for example, Tunnelling or Device Management.
Before trying to establish a connection, the client should first check whether the
requested mode is supported. It can then send aCONNECTREQUESTframe to
the control endpoint of the service container with its own data endpoint HPAI
as payload. The server should respond within the connection request timeout

11The endpoint is fixed to UDP port 3671 and can be reached via the system setup multicast
address 224.0.23.12.

12UDP as well as TCP on freely selectable ports are allowed for control and data endpoints.

39



Figure 7: EIBnet/IP core function

with a CONNECTRESPONSEcontaining the prepared data endpoint HPAI for
this connection. Since an unreliable medium can be used for transporting EIB-
net/IP frames, some sort of heartbeat monitoring and sequence counting must be
provided by the protocol. For each established communication channel, a se-
quence number starting with ‘0’ is maintained. For detection of communication
failures, a heartbeat in form of aCONNECTIONSTATEREQUESTis sent by the
client every 60 seconds.

All EIBnet/IP telegrams consist of at least the commonEIBnet/IP header.
The first octet is the header size, which for the time being is fixed to 06h. The
second octet represents the EIBnet/IP version, which is currently fixed to 1.0. The
following two octets describe the EIBnet/IP service type, according to which the
telegram is passed to the destination layer. The upper octet denotes the service
type family and the lower octet the actual service type of that family. The last two
octets of the EIBnet/IP header are the sizes of the header and the message body.
The following core EIBnet/IP services are defined:

40



• Search request: It is sent by an EIBnet/IP client via multicast to the discov-
ery endpoints of any listening server. Since this connection is stateless, the
client has to include its discovery HPAI in the body.

• Search response: The server responds with its control endpoints and a de-
scription of device hardware and supported service families.

• Description request: This frame is used to obtain a self-description of the
EIBnet/IP server. It further contains the client’s control HPAI, like the
search request.

• Description response: The response is addressed at the provided return ad-
dress (control HPAI) and contains variousDescription Information Blocks
(DIBs) . The device information DIB provides information about the KNX
medium, device status, physical and individual address, project-installation
identifier, device serial number, routing multicast address, MAC address
and device friendly name. The supported service families DIB lists, sup-
ported service type IDs and the manufacturer DIB identifies the device man-
ufacturer and may contain additional data.

• Connect request: The connect request is sent by the client with its own
control endpoint and desired data endpoint. Furthermore, it contains the
additionalConnection Request Information (CRI), which for instance se-
lects the requested connection type (management connection, tunnel con-
nection, . . . ).

• Connect response: After successfully preparing the data endpoint, the server
responds with the connection response telegram containing the communica-
tion channel ID, status information, data HPAI and aConnection Response
Data Block (CRD).

• Connection-state request: This frame is sent by the client to the control
endpoint of the server. It contains the unique communication channel ID
and the control HPAI.

• Connection-state response: The server responds with the communication
channel ID as well as a status code (no error, ID not found, data connection
error, KNX connection error).

• Disconnect request

41



• Disconnect response

See Figure 8 for the complete core frame format and services.

The second service type is EIBnet/IPDevice Management, which defines man-
agement of EIBnet/IP devices. Configuration and management of the device can
either be done via the IP network or the KNX network. In both cases the actual
data is carried in cEMI telegrams. The use of IP allows larger data structures. The
procedure is based on interface object properties: Each manageable value is as-
signed an unique property ID and a corresponding human readable property name.
The client can send aDEVICE CONFIGURATIONREQUESTpacket containing
the key and the actual value. The server processes the request and responds with a
DEVICE CONFIGURATIONACKNOWLEDGEMENTwithin 10 seconds. Typical
manageable values are, for instance, project installation ID, KNX individual ad-
dress, IP address, or friendly name. The actual frame format can be seen in Figure
8. For a full list of property IDs refer to specification in ([40] Part 3/8/3).

The Tunnellingprotocol describes the point-to-point exchange of KNX data
over the IP network for configuration and diagnostics of devices on the KNX
network. The tunnelling client sends cEMI management telegrams, contained in
an IP telegram to the tunnelling server, which passes the data to the KNX network.
All ETS functions are supported by tunnelling devices using this way. It has to
be mentioned, that the protocol does not address timing issues caused by the IP
network and therefore tunnelling protocol transfer time has to be smaller than the
transfer timeout of KNX. There are three different tunnelling services in EIBnet/IP
version 1.0:

• Tunnelling on KNX data link layer: Every EIBnet/IP device has to support
this mode. Upon establishing a connection with aCONNECTREQUEST,
the EIBnet/IP server assigns a KNX individual address to this connec-
tion and passes it to the client in theCONNECTRESPONSE. This dis-
tributed addresses can be configured and are stored in the propertyPID-
ADDITIONAL-INDIVIDUAL-ADDRESSES . The EIBnet/IP server for-
wards all KNX point-to-multipoint (group addressing) telegrams contained
in aTUNNELLINGREQUESTto the connected client, as well as the point-
to-point telegrams, matching the assigned individual address. Furthermore,
the server generatesIACK frames (see Section 2.1.3) for the assumed ad-
dresses. If the tunnelling client sends a cEMI frame with KNX Source
address set to 0000h, the server replaces the address with the individual one

42



Figure 8: EIBnet/IP frame format

43



and passes the message to the KNX network. If the address in the cEMI
frame is set, the server sends the telegram unmodified.

• Tunnelling in cEMI raw mode: In this mode, the server passes any KNX
message received to the connected client. Moreover, it does not generate
IACK frames. Implementation is optional.

• Tunnelling on KNX busmonitor: Activating KNX busmonitor mode may
disable any other EIBnet/IP services for the KNX subnetwork. Hence Tun-
nelling on KNX busmonitor should not be supported in a EIBnet/IP Routing
device. Implementation is optional.

For the EIBnet/IP Tunnelling frame format refer to Figure 8.

Routingis a point-to-multipoint protocol for routing messages between KNX
devices over the high-speed IP network. EIBnet/IP routers send UDP/IP multi-
cast messages to other EIBnet/IP routers on the same IP network, which in turn
filter the messages according to their destination address or group address and
eventually pass them to the KNX layer. EIBnet/IP routers can replace traditional
KNX line and backbone couplers. Care has to be taken of assigning individual
addresses to routers to ensure proper routing of KNX telegrams. ETS has there-
fore been improved with rules for address assignment to EIBnet/IP devices. To
be able to receive the multicast packages from the other routers, IGMP is used. It
informs the IP routers in the IP network of the desired IGMP membership of the
EIBnet/IP router. If two different KNX installations are using the same IP back-
bone, they have to use different multicast addresses for their routers. To control
the range (i.e. hops) a datagram can travel, routers can set the TTL to the required
value. Since the IP backbone is a lot faster than the KNX network, overflows
of the IP-to-KNX queue can occur because the router is not able to transmit all
received frames to the KNX network. On this event, EIBnet/IP routers should
maintain overflow counters and should transmit aROUTINGLOST MESSAGEto
the IP network, allowing a central monitoring station to detect troubles in network
design. The frame format can again be seen in Figure 8.

44



3 Requirements

In this section the requirements and foregoing efforts of how an appropriate plat-
form should be realised are described. Without question, a lot of KNX/EIB plat-
forms are already on the market and the question arises why to reinvent the wheel.
To put it short, none of the existing solutions was able to meet all our constraints,
which were the following:

• Universally applicable: The primary goal for our new platform is that it
should be universally applicable as a gateway and interface for KNX/EIB.
The main purpose is to serve as a basis for further work in the scope of
home and building automation (e.g. plug and play facilities, integration into
Open Services Gateway initiative (OSGi) environments [36], coupling to
other networks, extensions with regard to security issues, setup of set-top
boxes, access point for BASys [5]).

• Low cost and compact: The platform should be designed as a compact and
low cost stand-alone device. This includes costs for PCB manufacturing as
well as costs and availability of used components. Experienced users should
be able to build it from scratch using cheap off-the-shelf components. Most
important, no additional hardware or drivers should be needed.

• Experimental embedded platform: The platform will not be primarily de-
signed for end-user resale. It is rather designed for lab use. This should
not unnecessarily compromise later commercial use, however. For now, it
should be possible to use it as an experimental platform, without, for exam-
ple, proper housing.

• Robust: Despite the experimental use, the platform should be electrically
safe and easy to handle. This includes, for example, galvanic isolation of
KNX/EIB side and microcontroller side as well as a proper socket for the
Secure Digital / Multimedia Card (SD/MMC).

• Flexible: To provide universal and flexible use, the platform should be con-
figurable in hardware (by use of e.g. jumpers) and software. Furthermore,
the hardware should be extensible: Future extensions should be possible.
An interface which allows such functions should be provided.

• Ease of use: The platform should be easy to use, even for non-advanced
users (e.g. provide a C compiler), but nevertheless powerful functions and

45



low level access should be possible. For testing purposes, all parts of the
hardware should be accessible, so that, for instance, usage of an oscillo-
scope is possible.

• Sufficient resources: The used hardware should be powerful, meaning that
enough processing power and memory should be present to implement ser-
vices like e.g. TCP/IP or USB. Moreover, further extensions like crypto-
graphic algorithms for secure KNX/EIB should not form an obstacle. For
such applications some sort of persistent storage (>1MB) is required.

• Design openly available: The design of the hardware and software should
be openly available.

3.1 Hardware

Hardware requirements of the platform are enumerated easily: Only an embed-
ded design design is practical, as a PC-based design does not meet the above
stated requirements. Important entries on the wish-list for the platform are an
KNX/EIB connection, RS232 access as well as direct I/Os. Protocols like EIB-
net/IP and KNX on USB are to be implemented and therefore hardware support
for IP and USB must be present. Furthermore, additions like LON or Controller
Area Network (CAN) [43] support should be possible. Selection of appropriate
components depends on various factors. Main driving factor is an existing proto-
type gateway designed by Oliver Alt [4] and available know-how.

3.1.1 Microcontroller

A lot of different Micro Controller Units (MCUs) are present on the market. Se-
lection of the model is not only based on supported features, but also on personal
preferences. Hardware requirements are sufficient CPU power, RAM, flash mem-
ory and EEPROM, which preferably can be programmed directly by the MCU. At
least a 16-bit CPU is required. Moreover, sufficient I/Os should be present. Due
to the fact that no MCU with both integrated USB and Ethernet support exists up
to now, a solution with an external bus interface is needed so the missing features
can be connected externally. As mentioned earlier, in-system programming of the
MCU should be possible (i.e. without external flashing equipment).

46



3.1.2 Ethernet controller

Connection to Ethernet can be realised in various ways. Solutions based on dif-
ferent interfaces exist: Connection to the CPU can performed via UART, Inter-
IC (I2C), Serial Peripheral Interface (SPI), Industry Standard Architecture (ISA)
bus or Peripheral Component Interconnect (PCI) bus. Depending on the interface,
different speeds (10 MBit/s, 100 MBit/s, . . . ) are possible and different imple-
mentation efforts have to be made. Controllers also differ in hardware support
regarding supported layers: physical layer (layer 1) support must be present in all
controllers whereas only some of them offer data link layer support (layer 2). The
controller selected should provide as much hardware support as possible and for
connection to the MCU application notes should exist.

3.1.3 KNX/EIB connection

Connection to the KNX/EIB bus can be realised using any of the TP1 interfaces
presented in Section 2.1. The required passive components and PCB space should
be as low as possible. Furthermore, low level access to the KNX/EIB bus should
be possible to provide the basis for further academic work such as fault injection
or traffic analysis. The platform also should provide the capability to act as a bus
monitor and simultaneously be able to send frames to the KNX/EIB.

3.1.4 USB support

Integration of USB should be possible with minimum required effort and addi-
tional components. Ideally, the MCU has native USB support and drivers exist.
For further extensions, support of the USB host feature would be a benefit.

3.1.5 Additional components

For permanently storing huge data amounts, some sort of persistent memory is
required. An external medium with write and read support in standard PC devices
like a compact flash or a secure digital card is desired. As standard serial connec-
tion, at least two UARTs with attached RS232 transceiver should be present.

47



3.2 Software

3.2.1 Development

Traditionally microcontrollers are programmed in assembler, but nowadays C
compilers are usually shipped. The selected microcontroller should offer a free
development environment with C compiler and debugging support. Moreover,
application notes and programming samples should be available. Reference im-
plementations should exist.

3.2.2 Implementation

Manifold possibilities arise if the hardware of the platform fulfils all desired re-
quirements. It can not only form a platform for testing existing stacks and im-
plementations, but also be integrated into a real KNX/EIB installation (via, e.g.
the integrated web server). As a beginning, ETS support via EIBnet/IP should
be possible. KNX on USB implementation is not performed by the author, but is
currently under development. Furthermore, simple programs should be available,
to test the underlying hardware. As further extension, BASys support should be
integrated.

Architecture of the software should be modular and should support code reuse.
Furthermore, it should be as hardware independent as possible.

48



4 Hardware

This section describes the design process – from selection of the components to
realisation of the final hardware – of the platform.

The idea for a multipurpose EIBnet/IP gateway evolved in September 2004.
Within the scope of a practical course, EIBnet/IP was implemented on a Fujitsu
microcontroller. For development and testing purposes it was plugged into a Fu-
jitsu development board. It featured a reset button and a bank of Dual In-line
Package (DIP) switches for mode switching (e.g. flashing and operational mode)
of the MCU. Two RS232 connectors were present, one being used for connection
to Serial Line Internet Protocol (SLIP) and the other being used for connection
to the TP-UART. The TP-UART and the required components were plugged into
a circuit board [72]. It was connected to an UART of the MCU by a serial ca-
ble. The necessary drivers for the TP-UART were implemented in the firmware of
the microcontroller. Connection to an IP network was realised over a SLIP [61]
connection. For testing purposes, the experimental setup consisted of EIB/KNX
sensors and switching actuators, as well as an Siemens IP Router (N146) that
acted as counterpart for IP connections. For configuration and EIBnet/IP counter-
part ETS was used. This setup allowed demonstration of the device management,
tunnelling and routing capabilities of the gateway. Refer to [60] for a detailed
description on the experimental gateway.

In March 2005 it was decided to design, manufacture and program an inte-
grated standalone solution within the scope of this diploma thesis. In the be-
ginning a lot of time had to be invested by the author to become familiar with
hardware design and component selection. As project name “KNXcalibur” was
chosen.

Section 4.1 depicts the approach, which emerges from the requirements men-
tioned in Section 3, and decision for the actual components. Section 4.2 outlines
the hardware design of the final board and Section 4.3 contains important infor-
mation regarding the operation of KNXcalibur.

4.1 Selection of components

Selection of components is primarily based on available documentation, appli-
cation notes, software and firmware. The board is a further development of a
proprietary EIB gateway developed by Oliver Alt. Especially miniaturisation is
an important design goal.

49



4.1.1 Microcontroller

A microcontroller with integrated Ethernet module and USB module would fit
best for KNXcalibur. However, no suitable, single chip and cheap device is present
on the market. Various possibilities exist to connect external Ethernet chips to
all sorts of MCUs (see Appendix A.1 for examples). USB support, however, is
still rarely available and therefore a solution with native USB support is preferred.
The MB90330 family of Fujitsu is one of the first microcontrollers with integrated
USB device and USB mini host support. Connection to Ethernet can be realised
with an existing concept [4] and therefore the controller has been selected for the
platform. What is more, the author is already familiar with Fujitsu MCUs and
therefore no additional initial effort is required to learn an unfamiliar technology.
Good contacts to Fujitsu also exist13.

• The MB90F334A microcontroller is a 16 bit controller of the 16-LX-family,
manufactured in 0.35µm technology. It has a maximum operating fre-
quency of 24 MHz, which provides enough processing power.

• The controller features integrated 24 KB RAM and 384 KB flash ROM,
which can be multiple programmed via a special PC program. The con-
troller has enough memory to support simultaneous connections (e.g. multi-
ple TCP connections) and multiple services like EIBNet/IP and a web server
at the same time.

• 94 Input / Output (I/O) ports are present, whereof 72 are I/O pins and 22
open drain output pins. 16 I/O pins feature an internal pull up resistor pro-
grammable by software.

• The MCU has 4 UARTs, which are sufficient for two separate connections
to the KNX/EIB, one programming connection and a debugging connection
to the PC-side.

• The controller holds a lot of different timers: A 3 channel 16-bit reload
timer, one 16-bit free run timer, output and input compare timers, 8/16
bit Pulse Pattern Generator (PPG) timers, and a 16-bit Pulse Width Count
(PWC) timer.

13Thanks to Matthias Steeg of Fujitsu Microelectronics Europe GmbH for supplying the
MB90F334A samples.

50



• The 8/10 bit Analog / Digital (A/D) converter is currently unused. It can
be used for further extensions, such as a PEI connection with analog input
pins.

• 8 external interrupt pins are present and are used to connect to the Ethernet
controller as well as to the Save pins of the TP-UARTS.

• 3 channels for I2C bus exist.

• The MB90330 features an external bus interface which is very similar to
the ISA bus interface. With a little hardware support, ISA based Ethernet
controllers can be connected. See Section 4.2.4 for details.

• The controller has one-channel USB support. USB functionality with de-
vice (2.0 full speed) and mini host support is integrated into the controller.
Up to 5 endpoints can be used device mode.

• Fujitsu ships a free development environment with C compiler and debug-
ging support. Furthermore, a software emulator is available. See [1] for
details.

51



Figure 9: Block diagram MB90F334A

4.1.2 Ethernet controller

The IP connection can be realised in two ways. Firstly, there is the possibility to
connect the platform over SLIP, being a protocol to transport IP packets over a se-
rial line (see [61]). It is rather simple and was used for testing our prototype. Sec-
ondly, the platform can be connected using a dedicated Ethernet controller. See
Appendix A.1 for Internet links to existing solutions. The Cirrus Logic CS8900A
Ethernet LAN controller [10, 17] has been selected for use for the platform, due to
an existing schematic [4] for the Fujitsu external bus interface. It is a single chip
and low-cost controller for embedded applications, which does not need addi-
tional costly components. Furthermore, a comprehensive suite of software drivers
is available. The CS8900A is available in a 100-pin Thin Quad Flat Pack (TQFP)
package and has the following characteristics:

• The CS8900A supports a speed of 10 MBit, which is quite sufficient for a

52



platform, if the speed of KNX/EIB TP at 9600 bps is considered.

• The integrated RAM buffers transmit and receive frames and allows, in con-
trast to other Ethernet controllers, a design without additional memory.

• A direct ISA bus interface is provided by the controller, which allows easy
connection to the MB90F334A. Via the ISA interface both direct memory
access (memory mapped I/O) and indirect memory access (I/O mapped I/O)
with I/O access and a description register are possible resulting in great
flexibility concerning programming.

• Various important services are provided, so that no critical timings come up
when transmitting or receiving frames. The controller offers automatic re-
transmission in case of collisions, padding as well as Cyclical Redundancy
Check (CRC) computation.

• A lot of application notes and drivers for all operating systems exist, sim-
plifying integration into KNXcalibur.

• The CS8900A should be very well available at local dealers or Internet dis-
tributors.

Figure 10: Block diagram CS8900A

53



4.1.3 KNX/EIB connection

Connection to KNX/EIB is realised with the TP-UART IC developed by Siemens
[68]. It forms the easiest, most flexible and cheapest possibility to access the bus.
The chip provides layer 1 and layer 2 access. No critical timings are present.
Only the end of a telegram has to be detected, after 2 - 2.5 ms of bus silence,
which does not form a barrier for the MB90F334A. Analysis mentioned in 3 may
be performed using the analog mode of the TP-UART. The TP-UART is a 20
pin Small-Outline Integrated Circuit (SOIC) chip and requires little space on the
PCB. Hardware schematic is supplied by the vendor. For galvanic isolation, op-
tocouplers are used, which are supported natively by the chip (i.e. the transmit
and receive pins of the TP-UART feature enough driving current). To connect the
platform to different KNX/EIB TP lines and to provide the capability to act as
a bus monitor and simultaneously be able to send frames to the KNX/EIB, two
independent hardware parts (i.e. TP-UARTs) are needed which can be controlled
individually.

Figure 11: Block diagram TP-UART

54



4.2 Design

Figure 12: KNXcalibur: Hardware block diagram

The hardware design process of KNXcalibur consisted of various straightforward
steps:

1. Initial thoughts: At the beginning, the structure of the platform was fixed.
As shown in Figure 12 the following blocks exist: A power supply, two TP-
UARTs, two RS232 connectors, a USB device and a USB host circuit and
connectors, a SD/MMC card holder and an Ethernet controller and Regis-
tered Jack - 45 (RJ-45) connector.

55



2. Schematic: The schematic design evolved from application notes [31]14,
[27, 25, 24, 28, 26, 10, 16], hardware manuals and data sheets [30, 29, 68,
17] and [4]. As layout editor CadSoft’s Eagle [13, 14, 39] was selected. It
offers sufficient possibilities and proved to be relatively easy to learn. See
Appendix A.4 for the schematic15.

3. Layout: After completing the schematic, the components were placed. The
actual housing (pin count, package, . . . ) has to be considered at this time.

4. Routing: Eagle also supports routing of the circuit path. An autorouter is
present, but does not produce the desired results. Therefore all tracks were
routed manually. The component placement also was improved in this step
to optimize the results. [35] served as a good tutorial about PCB design.

5. Manufacturing: The PCB has been manufactured by Beta LAYOUT GmbH
- PCB-Pool [50]. A solder mask and position print were applied.

6. Mounting: Surface Mounted Design (SMD) as well as leaded components
were used. SMD components with a pin pitch of 0.5 mm minimum proved
to be difficult to handle in the beginning but finally they were soldered in
successfully.

Figure 13 shows a partial rendering of KNXcalibur, created from the board design
by Eagle3D (see A.1 for Internet link).

14Thanks to Peter D̈orwald of Glyn GmbH & Co. KG for support.
15Thanks to Christian Kral for support.

56



Figure 13: KNXcalibur: Eagle3D rendering

4.2.1 PCB design

The constraints of the PCB are derived from the requirements presented in Sec-
tion 3. The board is in Eurocard format (160 mm× 100 mm) because this is a
popular default size used in industry (and because Eagle is limited to this size in
the standard version). It is double sided to keep down costs and simplify man-
ufacturing. This implies that no dedicated ground or Voltage at the Common
Collector (VCC) plane is present, resulting in a suboptimal solution regarding
ElectroMagnetic Compatibility (EMC) design (see [25]). However, this trade-
off has been accepted, most notably because a 2-layer design allows easier bug
fixes. If errors would have been present in the schematic, traces could have been
cut and fixed with wires. A 4-layer design with inner planes not accessible from
outside does not allow that. To still provide measures against Electromagnetic
Interference (EMI), a big ground plane on top and bottom layer was created. Fur-
thermore, decoupling capacitors were installed for each connector pin to reduce
the noise of external lines. Until now no troubles regarding EMI were encoun-
tered16.

Signal tracks and gaps are at least 10 mil17 wide. VCC lines are at least 24 mil

16The test environment is not particularly noisy regarding EMI.
17A mil is the imperial unit for 1

1000 = 1 mili inch. In PCB design imperial and metric units are
used. 100 mil (0.1 inch) are equal to 2.54 mm.

57



wide. Although track sizes and gap sizes of 8 or even 6 mil, which could be man-
ufactured by PCB-POOL [50], would have simplified the routing process, a min-
imum width of 10 mil is set. So manufacturing technology is not exhausted and
the board can also be manufactured by low priced, less technologically advanced
companies. Using these track size constraints, no temperature rise of the tracks
is noticeable and resistance, isolation and current capacity seem to be fine. For
detailed physical tables about copper width, current capacity, resistance, isolation
and temperature dependence see [76].

To achieve tighter integration and still be able to handle components easily,
SMD parts of size 1206 (3.20 mm× 1.60 mm) and 0805 (2,00 mm× 1,25 mm)
are used. Since not all parts are available in SMT, however, also leaded compo-
nents are selected.

Two pin headers with 60 pins each are present on the board. They provide a
one to one mapping of the pins of the MB90F334A (pin1 - pin60 =CON1, pin61
- pin120 =CON2). So extensibility is guaranteed and a daughter board on top of
KNXcalibur can be realised. Moreover, they form ideal points for measurements
(logic level, signal form, noise, . . . ) and bug fixes. An eight pin header is also
assembled to provide power supply for the daughter board. Furthermore, all used
peripherals can be connected or disconnected via jumpers (e.g. both TP-UARTs
can be disconnected from the MCU). On the one hand this allows reuse of occu-
pied pins and on the other hand they simplified the first startup of the platform.
Errors can thus be located and eliminated easier. See Section 4.3 for a list of
jumpers.

4.2.2 Power supply

The components of KNXcalibur require 3.3 V input voltage. 5 V power is only
required for USB mini host connector supply and for optional extensions via a
daughter board. Two low drop voltage (0.7 V) regulators [69] are used, which
can be powered via an external mains adaptor or via the USB. Both regulators
provide a maximum of 500 mA. For USB mini host 100 mA are sufficient (see
[75]). Under load the platform currently requires about 160 mA. The power sup-
ply is therefore well dimensioned. The regulators are screwed down to the PCB to
improve heat conductance. Nevertheless input voltage to the regulators should be
as low as possible to keep power loss and heat dissipation low. To prevent short
circuits – solder mask is not an isolation – under the regulators, a TO-220 isolator
plate is mounted.

58



4.2.3 MB90F334A

The MB90F334A is fitted in a Low-profile Quad Flat Pack (LQFP)-120P package.
Two different versions are available: FPT-120P-M05 with a pin pitch of 0.5 mm
and FPT-120P-M21 with a pin pitch of 0.4 mm. In version 1.0 of the platform the
M05 package is used. The MCU is directly soldered to the PCB. Use of a socket
would increase costs significantly. Figure 14 shows the pin assignment of the
MB90330 family. Look at Appendix A.2 and A.3 for pin description and memory
map.

As minimum external circuit (see [27]) the MCU requires power supply, ana-
log digital converter, clock, reset and mode-pins to be connected. As mentioned
before, 3.3 V± 0.3 V are required as power supply for normal mode as well as
programming mode. 100 nF decoupling capacitors are placed at all supply pins of
the on-board chips and SD/MMC socket. Two Light Emitting Diodes (LEDs) in-
dicating the current state (on / off) are present. The analog/digital converter supply
pins (AVcc, AVss, AVRH ) are connected to VCC and ground via jumpers.

To the connectorsX0 andX1 a crystal with 6 MHz resonant frequency and
22 pF bypass capacitors have to be connected. The maximum internal clock fre-
quency of 24 MHz can be selected with PLL×4 (see 5.1). Alternatively an exter-
nal clock can be used. Furthermore a sub clock with 32.768 MHz at pinsX0Aand
X1A also has to be connected.

A low active reset pin is present. It is pulled up with a 47 kΩ resistor. The
MCU can be manually reset with a push-button.

59



Figure 14: MB90330: Pin assignment

The MB90330 has three so called mode pins (MD0, MD1, MD2). They act as a
switch for the current operation mode of the MCU. Six different modes are sup-
ported, which specify the load methods for the reset vector and the mode data.
Two special pins (P60, P61) determine settings for programming mode. For a
minimal system only two modes are necessary:Flash Asynchronous Serial Pro-
gramming ModeandFree Running Mode. The former mode allows the firmware
to be transferred from a PC to the MCU via the serial interface. The latter stands
for normal operation. For easy mode switching a jumper has been placed, which

60



allows toggling ofMD0/MD2high or low level. Therefore, for switching between
the two most important operating modes only a single jumper has to be moved.
This is a considerable improvement over the Fujitsu board, where multiple DIP
switches had to be set for this purpose. However, if other modes should be de-
sired,JP6 has to be removed and the mode pins have to be set to GND viaCON1.
Furthermore, a LED has been installed, indicating the current mode. See Section
4.3 and Table 7 for details on usage.

P61 P60 MD2 MD1 MD0 Mode

x x 0 1 1 Run
1 0 1 1 0 Flash

Table 7: MB90330: Mode pin settings

4.2.4 CS8900A

The CS8900A-CQ3 is housed in a LQFP-100P package with a pin pitch of
0.5 mm. As is the MCU, it is directly soldered to the PCB. The connection to
the MCU has been adapted from Oliver Alt’s18 EIB gateway. This applies espe-
cially to the ISA address decoder logic.

The external bus interface of the MCU uses multiplexed address- and data
lines at pinsAD00-AD15 andA16-A23 (see Figure 14). The ISA bus, however,
uses separate address and data lines. With the help of two address latches of type
74LVC573AD [54] and theALE (address latch enable) signal of the MCU the two
signals can be separated again.

The ISA architecture distinguishes in hardware between I/O access to periph-
eral devices (I/O mapped I/O) and memory accesses. In such an architecture
the programming model distinguishes between I/O acesses through special com-
mands and memory accesses. In the 16-LX-family, however, I/O accesses are
mapped into memory area (memory mapped I/O). To support both access kinds
of the ISA bus, a special logical circuit is needed that creates/emulates the four
I/O-signals of the ISA bus (IOREAD, IOWRITE, MEMREAD, MEMWRITE).
The logic circuit consists of three logic gates (two OR gates and one inverter). It
has to be noted that the ISA bus uses negative logic for control signals.

18Big thanks to Oliver Alt for support and providing schematics and software.

61



The whole ISA bus area is mapped into the address space of the MCU. Since
the ISA bus uses only 20 address lines (20 bit) and the MCU has 24 address lines
(24 bit), the upper four lines of the MCU can be used to select between memory
and I/O area. As seen in Figure 15 the address bitA20 of the MCU is defined as
the control signal. Depending on its value, I/O or memory mode is selected and
the additional logic creates the read/write signals. IfA20 is low (I/O access), all
I/O addresses are selected whereas if it is high, a memory access occurs. Thus the
address space 200000h - 2FFFFFh is used for I/O and the address area 100000h

- 1FFFFFh for memory access.A22 is used as a chip select bit. If it is high, the
whole decoder logic is out of function and the attached CS8900 is not addressed.
To give an example: If the MB90F334A generates the address 200300h, the ad-
dress seen by the CS8900A will be 00300h with one of its I/O commands (IOR
or IOW) active. Similarly when the MB90F334A generates address 101400h, the
address seen by the CS8900A will be 01400h with one of its memory commands
(MEMR, MEMW) active.

Figure 15: ISA address decoder logic

Timing has to be considered when connecting the MB90F334A and the
CS8900A. For correct operation, fast logic gates have to be used. The 74LVC04D
[52] and 74LVC32APW [53] families were chosen. According to [17] the
CS8900A requires roughly 135 ns at maximum for a 16-bit I/O read. For this

62



reason wait cycles for accesses to the external memory area have to inserted by
the MB90F334A. This can easily be done by altering the initial start.asm file. At
an operating frequency of 24 MHz the minimum execution time of an instruction
is 41.6 ns. Therefore three wait cycles should be sufficient and are defined in the
start.asm. See Section 5.1 for details.

Their propagation delays are sufficiently low. A further adaption is needed for
the reset signal of the CS8900A. In the ISA architecture it is high active whereas
for the MCU it is low active. The interrupt outputs of the CS8900A are con-
nected to the interrupt inputs of the MCU. A jumper allows selection between the
four interrupt pins. Only one interrupt pin has to be connected. Connection to
Ethernet is realised with a RJ-45 connector with integrated transceiver and LEDs
[73]19. Routing of the address and data lines is not quite optimal due to the 2-
layer constraint and the required pin headers. Nevertheless, no parasitic effects
have occurred or have been measurable yet.

4.2.5 RS232

Serial connection to PC side has been realised withUART0andUART1. UART0
is primarily used for flashing whereasUART1 is freely available and currently
used for debugging. A MAX3232 [45] with 2×2 channels is mounted as RS232
converter with true level and SUBD connectors are placed. Via jumpers either the
CTS and RTS line of connector 0 or the transmit and receive lines of connector 1
can be connected to the MAX3232. This allows, for instance, the PEI 16 protocol
to be implemented. See Section 4.3 for details.

4.2.6 TP-UART

To support bus monitoring as well as normal operation mode on the KNX side,
two TP-UARTs are connected. They are connected galvanically isolated to the
MCU via optocouplers [3] and their circuit has been routed single-sided on the top
layer to provide a clear boundary between the TP-UARTs and other components.
The circuits on TP-UART side are powered via the KNX/EIB network. By setting
a jumper,TPUART1can be operated in analog mode. Moreover, the two TP-
UARTs can be connected to different KNX networks, enabling the device to act as
a coupler.TPUART1is connected toUART3of the MCU,TPUART2is connected
to UART4. For hardware resetting, two reset lines are also connected to I/O pins

19Thanks to Christina Jackob of UMEC elektronische Komponenten GmbH for supplying the
UE-LT1S023A-34 RJ-45 sample connectors.

63



of the MB90330. The TP-UART features a save pin, indicating a break-down
of bus voltage for more than typically 1.5 ms. These pins are connected to the
external interrupt pinsINT4 andINT5 of the MCU and can also be polled. If bus
power is present, a logical ‘1’ can be read whereas a logical ‘0’ is read if there is
no power.

4.2.7 USB connection

USB hardware setup has been implemented as described in [31] and [74]. A
USB-B and an USB-A connector [47] are present on KNXcalibur. With the USB-
B connector the board can be connected to a PC (USB-Host). The board then
functions as an USB device and no external power supply needs to be connected.
Simultaneous use of the Mini-Host feature is not possible. Via a jumper the USB
attachment procedure can be configured. The controller can either always register
to the USB after attachment or be configured to only register via software. To
connect devices (e.g. keyboards) to the platform the USB-A connector is used.
KNXcalibur then functions as Mini-Host. External power supply is needed in this
case.

4.2.8 SD/MMC card connection

To support persistent data storage without requiring writing to the MCU on-chip
flash memory and to extend available memory, a SD/MMC card connection has
been integrated. Only minimal additional hardware is required, which was the
main requirement. Moreover, the SD/MMC card is “smart” and can be written
and read in normal card readers. The SD/MMC card can be accessed via hardware
or software SPI. Since the hardware SPI pins are shared with the interrupt pins,
which are used for TP-UART connection, the SD/MMC card holder is connected
to standard I/O pins and SPI is emulated. At least four signals (CS, CMD/DI,
CLK/SCLK, DAT/DO) have to be connected. The card holder also has two low
active pins for detection of card and write protection. They are connected too. In
version 1.0 of KNXcalibur the two required pull-up resistors were forgotten and
so always a ‘0’ was read from the pins. Two provisional pull-up resistors have
been soldered in to fix this bug. For description of SD/MMC see [66] and for bus
timing constraints see [67].

64



Figure 16: KNXcalibur: Picture

4.3 Usage

For safely operating KNXcalibur, at least this Section and Section 5.1 have to
be read and understood. Under normal circumstances it should be impossible to
physically damage the hardware by software. Care has to be taken when pins are
forced to a specific level by hardware (e.g.P60 andP61) and not to configure
them as output by software. When attaching own peripherals via, for instance,
CON1or CON2schematics and Section 4 have to be considered to avoid toasting
the platform.

As mentioned earlier, KNXcalibur has no proper housing. Hence power sup-
ply lines and EIB lines are reachable. Of course, the applied solder mask provides
some sort of electric isolation but at least the connectors/pins, pads and vias of
resistors or chips lie freely. Care has to be taken to not get an electric shock or
produce a short circuit. In version 1.0 of KNXcalibur the drill holes of the USB
connectors are not tinned and soldered in and hence the connectors are not prop-
erly mounted. Avoid plugging cables without properly fixing the connectors.

To use the platform, obviously a power supply is needed. The first possibility

65



is to use the power supplied by a USB host. Only 3.3 V operation is possible and
hence the USB Mini Host function and 5 V part of the AUX connector cannot be
used.Power switch 1 of S2 and the 5 V AUX power ledLED2 have to be
off. Power switch 2 of S2 can be used to turn the platform off or on.LED3
indicates the current state. If the USB Mini Host is needed, an external power
supply via connectorX3 must be connected. 6 V - 16 V can theoretically be used.
The two voltage controllers, however, are cooled passively and in order not to heat
them up too much, 6 V power supply is strictly recommended.

Figure 17: KNXcalibur: Power supply

The platform offers a DIP buttonS1 to reset the platform. As mentioned be-
fore, the MCU has various operating modes. Power has to be off to switch modes.
The flash mode is used to program KNXcalibur viaUART0: JumperJP1 has to
be closed and a PC has to be connected via a standard serial cable. Furthermore,
JP8 andJP10-1 have to be closed andJP10-2 has to be open.JP6 has to be in
state1+2 and the programming LEDLED1 is automatically turned on. To select
run mode,JP6 has to be in state2+3 , programming LED being off. To switch op-
erating mode as long as no additional hardware is connected viaCON1/CON2and
data direction settings are considered, all other jumpers can remain unchanged.
See Figure 18 and Table 8 for details about available jumpers and functions.

66



Figure 18: KNXcalibur: Jumper location

As the platform has been designed to be extensible, all peripherals can be dis-
connected or connected and configured via jumpers. Moreover, not all pins of
the microcontroller are set to a specific level by hardware (by e.g. pull-down re-
sistors). To prevent floating and possible physical damage of the hardware, the
corresponding pins have to be set to a specific logic level by software. This can
be achieved with the help of the port data direction registers of the MB90F334A.
Setting them to output and writing a value prevents floating of unconnected pins.
This step should be performed at the beginning of the user application. Neverthe-
less at leastJP7 has to be closed to prevent the analog digital converter pins from
floating. To give an overview of connected and used pins and their data direction
refer to Table 9. For usage of KNXcalibur, reading Table 9 in the following way
may be useful: For example, to determine the connection of the data input pin of
the SD/MMC card, look at columns “Port” (“3”) and column “Name” (“1”). The
DI signal is connected to hardware pin 1 of the MCU, which can be accessed via
the synonym to “P31”.

67



Name Type Value

S2 Power power switch (1=5V, 2=3.3V)
CON1 Pinheader one to one mapping of pins 1-60 of MB90F334A
CON2 Pinheader one to one mapping of pins 61-120 of MB90F334A

POWER Pinheader power to external peripheral
(pin1=3.3V, pin2+4+6+8=GND, pin3+5+7=5V)

JP1 MAX3232 dis/connect MAX3232⇔MB90F334A
JP2 TPUART1 dis/connect TPUART1⇔MB90F334A
JP3 USB dis/connect USB⇔MB90F334A
JP4 USB Mode USB logon

(1+2=pull up, 2+3=transistor and HCONX)
JP5 MD1 mode pin 1 value

(open=high, closed=low)
JP6 Mode easy mode selection, observe programming LED

LED1
(1+2=programming mode, 2+3=run mode)

JP7 Analog set level of analog pins to prevent floating (ADC in-
put)

JP8 P6X DC dis/connect JP10⇔MB90F334A to freely use
P60/P61

JP10 P60/P61 set pin60 and pin61 to defined level (JP10-1 closed
and JP10-2 open for flashing)
(open=high, closed=low)

JP11 INT dis/connect interrupt pins CS8900A⇔MB90F334A
(1+2=INT0, 3+4=INT1, 5+6=INT2, 7+8=INT3)

JP13 MODE1/X1 set operating mode TP-UART1
(2x 1+2=normal mode, 2x 2+3=analog mode)

JP14 TPUART2 dis/connect TPUART2⇔MB90F334A
JP15 EIB dis/connect EIB/KNX0⇔EIB/KNX1

(1+1 and 2+2=open/closed)
JP16 TXD1/RTS0 dis/connect UART0/1⇔MB90F334A

(1+2=TXD1, 2+3=RTS0)
JP17 CTS0/RXD1 dis/connect UART0/1⇔MB90F334A

(1+2=RXD1, 2+3=CTS0)
JP16/JP17 RTS0/CTS0 dis/connect RTS0⇔CTS0

(JP16-3 + JP17-3=RTS0/CTS0 open/closed)

Table 8: KNXcalibur: Jumper settings

68



Peripheral Port Bit HW Pin Direction Func

TP-UART1 9 0 29 in SIN2
1 30 out SOT2
2 31 out RES2

6 4 25 in INT4

TP-UART2 9 3 32 in SIN3
4 33 out SOT3
5 34 out RES3

6 5 26 in INT5

CS8900A 0 0-7 93-100 in/out AD
1 0-7 101-104,109-112 in/out AD
2 0-7 113-120 in/out AD
6 0-3 21-24 in INT0-3
5 0-7 81-86,91,92 in/out BUS

P60/P61 6 0,1 21,22 in MODE

UART0 4 2 11 in SIN0
3 12 out SOT0

UART1 4 5 18 in SIN1
6 19 out SOT1

SD/MMC 3 0 1 out CS
1 2 out DI
2 3 out CLK
3 4 in DO
4 5 in CD
5 6 in WP

unused 3 6,7 7,8 / /
4 0,1,4,7 9,10,17,20 / /
6 64-67 25-28 / /
7 0-7 39-46 / /
8 0-7 48-55 / /
9 6 35 / /
A 0-7 56-63 / /
B 0-7 64-70 / /

Table 9: KNXcalibur: Port connections

69



5 Software

This section is split into three main parts. The first Section 5.1 describes the
necessary steps to flash the microcontroller and to load one’s own application
to the MCU. Furthermore, the most important development tools are explained
and the required hardware code constraints are listed. Section 5.2 describes
available low level firmware from an abstract and general point of view. For
detailed documentation of available low level functions (e.g.initUART() ,
printfUART() , . . . ) see comments in the source files. The available tools to
test the hardware are also documented. The last Section 5.3 describes the available
stacks/applications, which are partly or fully implemented.

5.1 Initialisation and usage

5.1.1 Development tools

Fujitsu ships various freely available and non-restrictive20 development tools with
their microcontrollers.Softune workbench is an IDE for the Windows op-
erating system (see Appendix A.1 for Internet link) with integrated C compiler –
which can also be used standalone – and simulator. It also features an integrated
project management function. Programming can either be done in C or assembler.
All KNXcalibur related software is written in C and has been integrated into a
common workspace21 managed bySoftune . It consists of a common lib and
different projects. To create a new project for an application, it is best to copy
an existing project and adapt filenames. This way all special settings (assembler,
compiler, linker, . . . ) for the MB90F334A are maintained and the user does not
have to worry about them. Only the reference to the common library has to be
adapted. Application notes for various functions can be downloaded from the
Fujitsu homepage (See Appendix A.1 for further Internet links).

20e.g. without runtime licences
21Obtain sources from project homepage (see Appendix A.1) and open

fpraus/MB90330/KNXcalibur/KNXcalibur.wsp .

70



Figure 19: Fujitsu Softune Workbench

A downloadable hex file is generated via the build button in Softune. The
*.mhx is located in theabs subdirectory of the project by default. It can be
downloaded with the supplied flash programmer. Necessary hardware settings
on the KNXcalibur board can be seen in Section 4.3. For KNXcalibur an external
frequency of 6 MHz and the controller MB90F334 have to be selected. See Figure
20 for an example.

Figure 20: Fujitsu MCU Flash Programmer

71



As mentioned earlier,UART1is currently used for advanced debugging mes-
sages. Counterpart on PC side is any type of terminal. The integrated terminal
function of Windows calledHyperterminal can be used. The provided func-
tions are quite sufficient for first tests and implementations.

5.1.2 Usage

To initialise the microcontroller and additional hardware, several steps are nec-
essary. These steps are project dependent and hence the corresponding files are
located in theSrc subdirectory of the project.

At first configurations, like operating frequency, external bus mode, . . . are
done by thestart.asmassembler file, which is provided by Fujitsu and intended
to be customised by the user. Although it is not necessary to use this file, it is
strongly recommended. Structure of the file is as following:
;====================================================================
; 1 Contents
;====================================================================
; 1 Contents
; 2 Disclaimer
; 3 History
;
; 4 SETTINGS (USER INTERFACE)
; 4.1 Controller Family
; 4.2 Memory model
; 4.3 Constant Data Handling
; 4.4 Stack Type and Stack Size
; 4.5 General Register Bank
; 4.6 Low-Level Library Interface
; 4.7 Clock Selection
; 4.8 External Bus Interface
; 4.9 Reset Vector
; 4.10 Enable RAMCODE Copying
; 4.11 Enable information stamps in ROM
;
; 5 Section and Data Declaration
; 5.1 Several fixed addresses (fixed f o r MB90xxx controllers)
; 5.2 Declaration of __near addressed data sections
; 5.3 Declaration of RAMCODE section and labels
; 5.4 Declaration of sections containing other sections description
; 5.5 Stack area and stack top definition
; 5.6 Direct page r e g i s t e r dummy label definition
;
; 6 Start-Up Code
; 6.1 Import external symbols
; 6.2 Program start (the reset vector should point here)
; 6.3 "NOT RESET YET" WARNING
; 6.4 Initialisation of processor status
; 6.5 Set clock ratio
; 6.6 Set external bus configuration
; 6.7 Copy initial values to data areas.

72



; 6.8 Clear uninitialised data areas to zero
; 6.9 Prepare stacks and set the active stack type
; 6.10 Set Data Bank Register (DTB) and Direct Page Register (DPR)
; 6.11 Wait f o r PLL to stabilise
; 6.12 Initialise Low-Level Library Interface
; 6.13 Call C-language main function
; 6.14 Shut down library
; 6.15 Program end loop
; 6.16 Configuration stamp in ROM (currently test only)
; 6.17 Debug address specification

The user has to adapt the definitions in part 4.

• 4.1 Controller Family: The MB90F334A is part of the MB90300 series.

• 4.2 Memory model: This settings determines the address width of the
callp function call for the main routine. Setting of the memory model22

also needs to be done separately for the C compiler. Leave atAUTOCONST.

• 4.3 Constant Data Handling: Constants can be stored in RAM or ROM.
Since ROM-mirror, which mirrors the flash memory into a 16-bit address-
able memory space, is available, constants should be stored in ROM via
ROMCONST.

• 4.4 Stack Type and Stack Size: The MCU supports two stack pointers. They
are useful for operating systems. For the current implementation only the
SYSSTACKpointer is relevant.

• 4.5 General Register Bank: Currently register bank 0 is sufficient. See [30]
for description.

• 4.6 Low-Level Library Interface: To use C functions likeprintf , several
low-level routines need to be defined and this optionCLIBINIT needs to
be on. Leave at off for current firmware.

• 4.7 Clock Selection: With the help of the internal PLL the operating fre-
quency can be selected.1

2
, 1, 2, 3, 4 are possible, 4 setting the maximum

frequency of 6×4 = 24 MHz.

• 4.8 External Bus Interface: The external bus interface can be configured
freely. For use with the CS8900A and decoder logic,INTROMEXTBUS,

22The MCU supports different types of memory accesses due to speed and code size differ-
ences: 16-bit accesses are faster and smaller than 24-bit accesses. The modesSMALL, MEDIUM,
COMPACTandLARGE, which alter address size of code and data, can be selected.

73



ADDRESSMODE MULTIPLEXEDand three wait states for access need to
be defined.

• 4.9 Reset Vector: The reset vector is not hardwired. Set to on to generate a
vector.

• 4.10 Enable RAMCODE Copying: The MCU supports executing code from
RAM. Leave at off.

• 4.11 Enable information stamps in ROM: Set to off.

The second important file isvectors.c. The Interrupt Service Routines (ISRs)
and interrupt levels are defined here. 8 different levels, 0 being the highest, can be
defined. They are assigned to the Interrupt Control Registers (ICRs), which each
have two interrupt sources. To put it differently: Two interrupts share a single
priority. Here is an extract from the file:
vo id InitIrqLevels( vo id )
{
/* ICRxx shared IRQs for ICR */

ICR00 = 7; /* IRQ11
IRQ12 */

ICR01 = 7; /* IRQ13
IRQ14 */

.

.

.

/*---------------------------------------------------------------------------
Prototypes
Add your own prototypes here. Each vector definition needs is proto-
type. Either do it here or include a header file containing them.

-----------------------------------------------------------------------------*/

__interrupt vo id DefaultIRQHandler ( vo id );
__interrupt vo id rcUART1( vo id );

.

.

.

#pragma intvect DefaultIRQHandler 38 /* Ext. SIO */
#pragma intvect rcUART1 39 /* UART 0 RX / UART 1 RX */

.

.

.

__interrupt
vo id DefaultIRQHandler ( vo id )

74



{
__DI(); /* disable interrupts */
whi le (1)

__wait_nop(); /* halt system */
}

The keyword interrupt denotes a function as interrupt function. Interrupt
nesting is also possible and can be circumvented by globally disabling interrupts
via DI() .

The hardware components (UARTs, timers, . . . ) of the MB90F334A are ini-
tialised and controlled via registers, which are mapped to the memory space of
the MCU. Access to these memory spaces is simplified by definitions provided
by Fujitsu. Themb90330.h and mb90330.asmmap I/O memory spaces to the
defined names in the handbook. Furthermore, all available bits are defined. So
register assign operations look likePDR = 8and bitwise operations look like
PDRP00 = 1.

As mentioned in Section 4.2, not all pins are set to a specific level by hard-
ware. To prevent floating pins, unused pins have to be set to output. Several
routines have been developed to assist the user in configuring thedata direction
registers. They are defined in the fileconfig.c and need to be called by the
user right at the beginning of application code (i.e. first lines ofmain() ). At
leastinitBoard() needs to be called if all jumpers are disconnected. If, how-
ever, a specific hardware part of the board is connected – the jumper being closed
–, then the corresponding function has to be called to prevent driving of logic
levels on lines against each other.
/**

* set data direction ports to output
* and write 0
* to prevent floating pins
**/

#pragma inline initBoard
vo id initBoard( vo id ) {
// DDR0 = 0xFF; /* do not touch address */
// PDR0 = 0x00; /* and data lines of */
// DDR1 = 0xFF; /* the external businterface */
// PDR1 = 0x00; /* already defined by 4.8 */
// DDR2 = 0xFF; /* in start.asm */
// PDR2 = 0x00;

DDR3 = 0xFF;
PDR3 = 0x00;
DDR4 = 0xFF;
PDR4 = 0x00;

// DDR5 = 0xFF; /* do not touch control lines */
// PDR5 = 0x00; /* of the external businterface */

DDR6 = 0xFC; /* do not set P60+P61 to output */
PDR6 = 0x00; /* they are set to ground by jumpers for flashing mode */

/* remove jumper JP8 if you want to use these pins */

75



DDR7 = 0xFF;
PDR7 = 0x00;
DDR8 = 0xFF;
PDR8 = 0x00;
DDR9 = 0xFF;
PDR9 = 0x00;
DDRA = 0xFF;
PDRA = 0x00;
DDRB = 0xFF;
PDRB = 0x00;

}

#pragma inline initP6X
vo id initP6X( vo id ); // currently not used

#pragma inline initUART0
vo id initUART0( vo id ) {

DDR4_D42 = 0; // SIN0 input
}

#pragma inline initUART1
vo id initUART1( vo id ) {

DDR4_D45 = 0; // SIN1 input
}

#pragma inline initKNX0
vo id initKNX0( vo id ) {

DDR6_D64 = 0; // set INT4 input
DDR9_D92 = 1; // Reset output
DDR9_D90 = 0; // SIN2 input

}

#pragma inline initKNX1
vo id initKNX1( vo id ) {

DDR6_D65 = 0; // set INT5 input
DDR9_D95 = 1; // Reset output
DDR9_D93 = 0; // SIN3 input

}

#pragma inline initSD
vo id initSD( vo id ) {

DDR3_D33 = 0; //set pin MMC_DI to Input
DDR3_D32 = 1; //set pin MMC_Clock to Output
DDR3_D31 = 1; //set pin MMC_DO to Output
DDR3_D30 = 1; //set pin MMC_Chip_Select to Output
DDR3_D34 = 0; //set pin MMC_CI to Input
DDR3_D35 = 0; //set pin MMC_WP to Input

}

#pragma inline initETH10
vo id initETH10( vo id ) {

DDR6_D62 = 0; // set INT2 input
}

#pragma inline initUSBHost
vo id initUSBHost( vo id ); // currently not used

76



#pragma inline initUSBSlave
vo id initUSBSlave( vo id ); // currently not used

After considering all the points in this section, the MCU hardware should be
initialised and the low level firmware should work and can be called to further
configure and use the hardware components of KNXcalibur.

5.2 Low level firmware

The software architecture should fulfil the following aspects:

• Usage of structured programming: All required functions to control the
hardware shall be available by C-function calls.

• Portability: It should be possible to port the implemented software to other
microcontrollers easily.

• Clear: The source code should be structured in such a way that the desired
functionality can be located easily and a function fulfils a clear role.

To honor the constraints mentioned above, the firmware has been split into hard-
ware dependent and hardware independent parts. A common header file can
therefore have two corresponding C files. The hardware independent file has the
same file name as the header file whereas the hardware dependent part has the
same name with the controller family appended (e.g.tpuart.h , tpuart.c ,
tpuart90330.c ). See Table 10 for a list of all files. The folder structure also
has been created with this idea in mind and is the following:
fpraus/

|---/common
|---/h hardware independent header files
|---/src hardware independent C files

|---/MB90330
|---/common

|---/h hardware dependent header files
|---/src hardware dependent C files

|---/KNXcalibur
|---/common common library project
|---/CS8900 Test CS8900 test project
|---/CS8900 Test/Src CS8900 test project files
|---/SD Test SD/MMC card test project
|---/SD Test/Src SD/MMC card test project files
|---/USB Test USB test files
|---/TPUART Test TP-UART test project
|---/TPUART Test/Src TP-UART test project files

77



Header file HW indepen-
dent C file

HW dependent
C file

Description

arp.h arp.c - handle ARP requests and manage
the ARP buffer

buffers.h buffers.c - ringbuffers for Ethernet and ARP list
cemi.h cemi.c - cEMI frame functions
config.h - config.c configuration and globals for current

microcontroller and setup
convert.h convert.c - convert between EMI formats
cs8900.h cs8900.c cs890090330.cfunctions to initialise and commu-

nicate with the CS8900A Ethernet
controller

dhcp.h dhcp.c - implementation of DHCP client
dos.h - dos90330.c DOS-like in- and outport functions

to communicate with devices at the
emulated ISA bus

eib.h eib.c - EIB-Frame functions
eibnetip.h eibnetip.c - implementation of EIBnet/IP
eibserver.h eibserver.c - EIBserver (BASys) functions
fat.h fat.c - FAT16 implementation by Ulrich

Radig
fat16.h fat16.c - FAT16 implementation by Zoltan

Gradwohl
globtype.h - - global typedefs
helper.h helper.c helper90300.c helper functions
http.h http.c - implementation of an HTTP server
icmp.h icmp.c - implementation of ICMP functions
ip.h ip.c - implementation of IP protocol
mb90330.h - mb90330.asm FFMC-16 I/O-Map
mmc.h mmc.c - MMC/SD card functions
rtc.h rtc.c rtc90330.c timer functions
slip.h slip.c slip90330.c SLIP protocol
tcp.h tcp.c - implementation of TCP protocol
tpuart.h tpuart.c tpuart90330.c TP-UART driver
uartapi.h uartapi.c uart90330.c UART functions
udp.h udp.c - implementation of UDP protocol

Table 10: KNXcalibur: Overview of software files
78



5.2.1 Timer

Figure 21: Timer callgraph

To provide easy and hardware independent access to the timers of the MCU, a
dedicated timer function is implemented. It is primarily used to allow various
functions (e.g. ARP timeout handling, EIBnet/IP timeout handling, . . . ) to share
a single timer with coarse resolution. The protocol implementations can register
with a desired time interval and a callback function. Note that only non-blocking
functions shall be registered, or otherwise the whole timer function will block. A
hardware dependent function initialises a hardware timer to generate an interrupt
every second. The ISR then iterates through the registered functions, checks the
desired time interval of the callback and eventually calls the function.

79



5.2.2 UART

Figure 22: UART callgraph

The functions to access the serial interfaces form an important part of the
firmware. On the one hand they are needed to communicate with the TP-UART
chips and on the other hand they can be used for complex debugging or status mes-
sages with the help of a terminal program. During development without an em-
ulator system they are often the only possibility to communicate with the MCU.
The implemented firmware offers functions to initialise the interfaces with dif-
ferent parameters. Furthermore, functions allowing to output formatted text in

80



C-printf style exist. Communication can be interrupt driven or realised via
polling. The implemented higher layers described in Section 5.3 only make use
of interrupts. As seen in Table 10 hardware dependent and hardware independent
parts exist. Only initialisation, sending and receiving of single bytes depend on
the MCU used.

To provide TCP/IP capabilities without the use of an Ethernet controller, the
SLIP protocol is implemented, which describes the transport of IP packets via a
serial line.UART1is used to establish a dial-up connection with a SLIP host (e.g.
Windows PC). All IP packets designated to KNXcalibur are received viaUART1
and stored in the same receiving buffer as those received from the CS8900A. For
higher protocols it is irrelevant whether a packet is transmitted via the CS8900A
or SLIP.

81



5.2.3 TP-UART

Figure 23: TP-UART callgraph

Two TP-UART ICs are present on KNXcalibur. It is possible to use one TP-UART
in busmonitor mode for receiving and the second one for sending or both in normal
mode for two different subnetworks. Moreover,TPUART1can be operated in
analog mode.

For receiving KNX/EIB telegrams, a ring buffer for multiple telegrams with
associated read and write pointers exist23: Buffer management is based on a two

23In the current implementation the ringbuffer stores up to 20 telegrams and is shared by both
TP-UARTs.

82



dimensional field of bytes. Global variables indicate which slot in the ringbuffer
is the one to write to and which is the one to read from. After a receive interrupt
of a TP-UART, a service routine is called which stores the received data byte in
the designated buffer. After that, a timer of the MCU is started in order to detect
the end of a frame after 2.5 ms TP-UART silence. This timer is reset after every
accepted byte. If it runs 2.5 ms – indicating the end of telegram – a different inter-
rupt is generated, which marks the telegram as completely received and modifies
the global pointers. Then a new telegram can be received in another position of
the ring buffer and the previously received data can be processed.

Sending of an EIB frame is done without use of interrupts. The function
sendEIBframe() implements the TP-UART handshake. Only one buffer ex-
ists, due to the fact that only one request can be processed at a time and hence
multiple buffers would be useless.

In normal mode TP-UART implements a part of layer 2, simplifying KNX/EIB
bus access. In analog mode, only the transceiver of the IC is working and the
MB90F334A has immediate access to KNX/EIB bus level. This means that all
timing constraints need to be considered and honored.

83



5.2.4 SD/MMC

Figure 24: SD/MMC callgraph

84



SD/MMC access has been ported from Ulrich Radig and from Zoltan Gradwohl
(see Appendix A.1 for Internet links). As mentioned earlier, the SD/MMC card is
accessed via software SPI, meaning that all serial communication (e.g. outputting
clock signal, determining logic level, . . . ) is handled in software. The timing
constraints during, for instance, initialisation are met using busy waits. The speed
of sending and receiving single bytes is only dependent on the speed of the MCU
and the output of the clock signal. No wait states are present in the low-level
communication routines.

The firmware supports all necessary parts of the SD/MMC protocol, starting
with reading and writing bytes. Block and sector access is possible as well as
reading the Card Identification Data (CID) and Card Specific Data (CSD) registers
of the SD/MMC card.

On top of the low level functions, file systems like File Allocation Table
(FAT)16, FAT32 or proprietary systems are possible. On KNXcalibur currently
FAT16 read support and write support to existing files on the card is possible. This
is quite sufficient for a simple web server or logging facilities. The SD/MMC card
has to be prepared using, for example, Linux. With the help ofFDISK a parti-
tion with file system (FAT16, type 06h) is created. Afterwards the card has to be
formatted usingMKDOSFS.

85



5.2.5 CS8900A

Figure 25: CS8900A callgraph

The Ethernet controller CS8900A is attached to the MCU via the described ISA
emulation logic. To achieve high portability and compatibility with standard ISA
bus programming methods, the well-known bus access functionsinport and
outport have been implemented. This additional encapsulation allows reuse of
the initialisation and sending code on every CS8900A based network interface.

Receiving of Ethernet frames is interrupt driven – similar to the receiving of

86



KNX/EIB frames24. Therefore the interrupt out pin of the CS8900A is connected
to the external interrupt pin of the MB90F334A. Currently interrupt pin 2 is used.
This can be selected with other parameters in the fileconfig.h . Transfer of a
received Ethernet frame takes place in the ISR of the CS8900A, which is located
in the filecs890090330.c . A ring buffer and the corresponding global pointers
exist. For sending, only one send buffer is available (similar to the TP-UART).

The CS8900A controller is configured to pass packets to the MCU, which are
sent to the broadcast address (FF:FF:FF:FF:FF) or to the address configured in
its address register. This address is currently set to 00:00:08:15:47:11 and can
also be configured inconfig.h . The ISR of the MCU usually should accept all
received frames. It is, however, configured to pass only IP and ARP packets to
higher layers in order to prevent the receiving buffer from overflowing and to min-
imise required processing power. This obviously breaches the protocol hierarchy,
because not all packets are routed to their destination layer/protocol. Neverthe-
less this tradeoff has been accepted because a lot of unnecessary broadcasts (e.g.
SAMBA communication) are filtered out.

5.2.6 USB

The Fujitsu USB firmware API (FUFA) and Fujitsu USB mini host API (FUMA)
have been developed by Thesycon Systemsoftware & Consulting GmbH in coop-
eration with Fujitsu. Both libraries are free of charge and can be obtained from
the webpage [71].

FUFA is a generic USB firmware library for microcontrollers of the MB90330
series implementing most of the functionality required by a USB function. It con-
trols the USB function of the MB90330 and handles all standard USB requests.
Requests like “suspend”, “resume” or “set configuration” are passed to the user
application by means of callbacks. All device specific parameters like endpoint
layout, protocol and USB descriptors can be controlled by the application soft-
ware. All data transfer types (see Section 2.2.2) at standard and full speed are
supported. Moreover, a demo application is included.

FUMA is a USB minihost library for Fujitsu MB90330 microcontrollers. It
controls the USB minihost of the MCU and provides a programming interface
(API) that is convenient to use. USB enumeration is completely covered by the
library and USB events like “Device Attached” or “Device Removed” are passed
on to the user application by means of call backs. A function-based interface to

24The ring buffer is able to store up to 5 frames

87



exchange data with a device is provided. No special device class is supported by
the library itself. On top of it special classes like Mass Storage, HID or Printer
class have to be implemented.

5.2.7 Test tools

To test a freshly manufactured and assembled board, several test tools have been
developed. They offer simple test possibilities and make use of the low level
firmware. These test tools have been assured to work and should be run on com-
pleted boards. The CS8900A, SD/MMC and TP-UART test programs offer a user
interface viaUART1. User input as well as output can be realised with a RS232
serial terminal (PC). No special UART test tool exists, since their correct function
is a prerequisite (e.g. flashing, . . . ) and can be observed using the other tools. The
test tools are available as separate projects in the common workspace.

TheTP-UART test toolallows to test both TP-UARTs in sending mode as well
as in receiving mode.TPUART1can also be operated in analog mode. Since this
mode has very though timing constraints, operating in analog mode is experimen-
tal. Using the test tool, the TP-UARTs can be reset by hardware. This means that
an I/O pin of the MCU is connected to the external reset pin of the TP-UART.
The Software then generates a high-low flank to reset the IC. A software reset is
performed via the UART supportedTP UARTReset.req . The status request
corresponds to the TP-UART state. A logical ‘1’ is read from the associated pin
if the TP-UART is is not connected to the KNX/EIB. A logical ‘0’ is read from
the pin if it is connected to KNX/EIB. In the current implementation only one TP-
UART can be in receive mode. Enabling receiving of one TP-UART automatically
disables receiving of the other TP-UART. A packet sent to the same KNX/EIB line
is received by the other TP-UART and output to the terminal. Figure 26 shows the
user interface.

88



Figure 26: TP-UART test tool

TheSD/MMC test toolperforms functionality tests for the SD/MMC card and
cardholder. The card has to be prepared as described in Section 5.2. The “card
inserted” pin and the “write protected” pin allow to determine the state of the
inserted card. If a card is inserted and is not write protected, a ‘0’ is read from both
corresponding pins. Otherwise a ‘1’ is read. To access the SD/MMC card it has to
be initialised at first. Then the CID and CSD (see [66]) as well as arbitrary blocks
(512 bytes) can be read from the card. Moreover, a block at the arbitrarily chosen
address 10 can be read and written by the tool. On top of this low level block
access, the FAT16 file system can be tested: After initialising the FAT system,
information about the partition and filesystem is printed. Then anindex.html
can be searched for and is printed to the terminal if found. Furthermore, some
bytes can be appended to a file calledtest.hex . See Figure 27 for the user
interface.

89



Figure 27: SD/MMC test tool

TheCS8900A test toolis rather simple and allows no/minimal user interaction
using the RS232 interface. It first tests communication with the Ethernet con-
troller via a fixed test procedure (see [10]). The address lines as well as bus logic
is tested in this step. If everything is fine (i.e. a fixed value can be read from a fixed
address of the Ethernet controller), the test tool initialises the CS8900A. Then ev-
ery received frame is passed to the higher stacks (see Section 5.3.1). KNXcalibur
can now be accessed via the integrated web server or pinging (ICMP). The needed
IP address is either obtained via DHCP or can be configured in andconfig.h
config.c .

The firmware and demo applications of Thesycon have been selected asUSB
test tools. The required files are included in the USB test project and need to be
unpacked, installed and compiled. To test the USB device function, the corre-
sponding FUFA hex file has to be downloaded and the demo application has to
be launched. After connecting KNXcalibur to the Windows PC, new hardware is
found and the device driver is installed. Then simple strings can be transferred in
an exchange with the demo application and a two way full speed transfer can take
place. See Figure 28 for an overview.

90



Figure 28: USB function test tool

To test the mini host function of KNXcalibur a USB keyboard is needed. Af-
ter connecting an external power supply to the board, the USB keyboard can be
plugged in. The FUMA mini host hex file needs to be compiled and transferred
to the MCU. Then a serial connection with a terminal viaUART0is established.
KNXcalibur then simply echoes all pressed keys to the terminal.

5.3 Network protocol stacks

The firmware of the microcontroller is implemented in various stacks/layers and
handlers. They make use of the low level firmware and extend the gateway’s pos-
sibilities and protocol capabilities. The software is based on Oliver Alt’s diploma
thesis [4] and has been adapted, redesigned and improved. Regarding the IP stack,
for instance, the firmware is now more user-friendly. Formerly, for sending each
protocol layer had to be aware of the whole telegram length including length of all
other protocols. Each layer had to calculate the position of its data in the sending
buffer on its own. The IP layer, for instance, had to be aware of the size of the ARP
header and write its data to positionsendbuffer[sizeof(ARPheader)] .
This handling has been improved using the principle explained in the next para-
graph. Nevertheless, the firmware is far from being finished and a lot of work has
to be invested into, for instance, securing the TCP/IP stack. The existing stacks,
especially the EIBnet/IP layer interworking with ETS, form a proof of concept
corroborating the design of KNXcalibur.

All layers feature the same mode of operation: The low level firmware trans-
fers the data and stores it in a well known buffer (UART receive buffer, KNX/EIB

91



ringbuffer with associated read/write pointers, . . . ). This data is presented to the
stacks as a byte array. By use of C language structures (typedef struct), point-
ers and casting, each network protocol stack can obtain the relevant data from
the byte stream, without actually copying the data: The ARP handler, for exam-
ple, defines the ARP header as structure (first 2 bytes=hardware type, second 2
bytes=protocol type, . . . ) and positions the corresponding pointer to the structure
at the well known starting-point of a received frame (i.e. beginning of a frame
received via the CS8900A) by use of a cast. It can then access data easily and
eventually pass the next starting point for a different structure (e.g. IP) to the
higher layer.

Figure 29: Network protocol stacks functioning principle

For sending frames one buffer for each physical network exists. Only one
packet can be processed at a time and therefore a single buffer is sufficient. To
minimise execution time and avoid usage of dynamic memory management the
following approach has been chosen: The buffer is created statically with the size
of the maximum transfer unit. The highest involved network protocol part starts
filling the buffer from the end and passes the data length to the lower layer. This
layer prepends its own data and again passes the request to the next layer. The
physical layer then transmits the buffer to the network. The currently implemented
network protocol stacks can be seen in Figure 30.

92



Figure 30: Software layer

5.3.1 IP

The IP stack forms the basis for many other network protocol stacks. [70] and
[51] give a good introduction to this topic.

To connect the gateway to IP via the serial interface, theSLIP protocolis
implemented. The gateway emulates a modem device using the standard protocol
and so a connection with the host PC can be established: A new SLIP connection
with arbitrary phone number but matching UART properties has to be created
under dial up services in Windows 95/98 and Windows XP. The according connect
function on the gateway then answers with “OK” to every received byte until the
phone number is received. Then it responds with ”connect“, the connection is
established and IP packets can be transferred via the send and receive function.

The other possibility to connect to the IP world is to use the CS8900A. When
using a dedicated Ethernet controller, theARPhas to be implemented to map IP
to Ethernet MAC addresses. Thearp.c andbuffers.c files contain the nec-
essary code. The ARP-IP address mappings are stored in a ring buffer with FIFO
principle – also called ARP list. Each mapping has a limited lifetime, which is
managed inbuffers.c by the timer described in Section 5.2.1. Upon receiv-

93



ing a packet via the Ethernet controller, the functionarpmanager is called. If
a MAC address as well as an IP address are present in a packet, the manager
updates the ARP-IP mapping via a dedicated function inbuffers.c . If the
packets forms anARPREQUESTto the IP of the gateway, the manager processes
the request and generates anARPREPLY. In any other case, thearpmanager
passes the packet to the designated layer.

To send a frame via Ethernet, the functionsendipframe is used. It queries
the available ARP list for the ARP address, completes the packet and sends it via
the CS8900A send function. It has to be mentioned that noARPREQUESTto
the communication partner is sent if an ARP-IP mapping is not found in the list.
Therefore every point-to-point communication must be initiated by the communi-
cation partner and not by the gateway. However, this is the case for all currently
used network protocol stacks: To use BASys, EIBnet/IP (e.g. ETS) or a Hypertext
Transfer Protocol (HTTP) client, they first have to establish a connection with the
gateway so an ARP-IP mapping can be gained. EIBnet/IP routing, on the other
hand, makes use of multicast communication and therefore the MAC address is
set to FF:FF:FF:FF:FF. Hence this missing feature does not form a drawback or
limitation.

The IP layer is located on top of the SLIP and ARP layer. Upon the recep-
tion of an IP package, it is handled by the functionipmanager . It checks the
destination address and eventually passes the packet to the ICMP, UDP or TCP
handler. Furthermore, it does checksum calculations. To send an IP frame the
function ipsend is called, which completes the frame and calls the underlying
network layer. IP fragmentation is currently not handled by the firmware.

ICMP was implemented mainly for testing purposes. Theicmpmanager re-
ceives the packet from the IP layer. It checks the request and does checksum calcu-
lations. Currently only theICMP-ECHO-REQUEST - ICMP-ECHO-REPLY
handshake is implemented. The gateway responds to ICMP echo packets.

UDP is a stateless service and therefore easy to develop. It is fully imple-
mented and is currently used for the BASys and EIBnet/IP part of the gateway.
Theudpmanager receives packets from the IP layer. Depending on the destina-
tion port, it calls the designated handlers, which are currentlyeibrcvserver
andeibnetipserver . To send an UDP frame the functionudpsend can be
used.

For the moment, theTCP implementation is in a first and very experimen-
tal phase. The device only supports one connection to the destination port 80
(HTTP). This is sufficient for an experimental web server. Thetcpmanager is
responsible for establishing a TCP connection and eventually passing the requests

94



to higher layers like the HTTP layer. It does checksum calculation and discards
faulty packets. To send a TCP frame the functiontcpsend can be called.

For obtaining a dynamic IP address,DHCP is implemented. After powering
up KNXcalibur, the firmware tries to obtain an IP address. If no DHCP server is
present, the device uses a hard coded IP (192.168.1.50 inconfig.c ).

5.3.2 Webserver

For the moment, HTTP (port 80) is the only implemented TCP service. Three
applications are currently possible: The current device status (EIB connection,
SD card status, . . . ) is returned in a formatted HTML page via the URL
/status (e.g. http://192.168.1.50/status). Secondly a simple interface for send-
ing KNX/EIB TP1 frames is presented via the URL/send . For any other URL
requests a standard web server facility is implemented: The corresponding file
is searched on the SD/MMC card and is then displayed to the user. It has to be
mentioned that due to missing IP fragmentation the maximum file size is limited
to the Maximum Transfer Unit (MTU) configured inbuffers.h .

5.3.3 BASys integration

BASys makes use of a proprietary and simple protocol. It uses UDP on
port 57776 as transport layer and offers three different services managed by
eibrcvserver : Via the request 01h the EIB gateway can be started. Every
received frame from the KNX/EIB is then passed to the connected UDP client.
Via the request 03h the EIB gateway is stopped and via the request 10h the at-
tached frame is put to the EIB.

5.3.4 EIBnet/IP

Three EIBnet/IP implementations have been developed at the Automation Sys-
tems Group. Yet another EIBnet/IP gateway [60] is an implementation targeted at
microcontroller use whereas Tweety [22] is a simple and modular implementation
for PC-based devices. Eibd [42] is a daemon for Linux systems providing access
to the KNX/EIB via PEI 10, PEI 16, TP-UART and EIBnet/IP. [60] is available
since 2004, but has not been properly tested due to a missing EIBnet/IP client as
communication partner. EIBnet/IP enabled ETS, more precisely the Falcon driver,
had not been available at that time. Therefore the existing EIBnet/IP implementa-
tion was ported to KNXcalibur and tested. See Section 5.3.6 for a short overview

95



about the Tweety server and why it was not ported to KNXcalibur.
The EIBnet/IP stack is positioned on top of the IP network layer and on top

of the cEMI handler and acts as a gateway between the two networks. It accepts
EIBnet/IP frames from UDP/TCP level and cEMI frames from the cEMI handler.
It processes the received frames according to their message types and passes valid
packets to the destination service. The EIBnet/IP stack on this gateway consists
of 4 fully implemented services, called layers in the following:

1. Core Layer: The EIBnet/IP Core Layer interprets the EIBnet/IP header and
provides basic frame checks for incoming telegrams. If header size, mes-
sage version and message size are correct, the telegram is passed to the spe-
cific handler. Furthermore, this layer is responsible for maintaining a list
of currently active connections. Due to the fact that UDP, which does not
provide any services for correct message ordering or message delivery, is
used for transportation, the layer also has to handle these missing services.
A sequence counter for incoming and outgoing messages is maintained by
the layer. For timing driven services like heartbeats or timeouts, the timer
firmware presented in Section 5.2.1 is used. The Core Layer supports mul-
tiple connections, which can be configured inconfig.h .

2. Device Management Layer: The EIBnet/IP Device Management layer is
responsible for remote configuration and management of the device. It ac-
cepts EIBnet/IP packets carrying cEMI frames, checks them and passes the
cEMI frames to the cEMI handler, which then processes the packets. The
advantage of configuring the device over EIBnet/IP is the support of larger
data structures.

3. Tunnelling Layer: EIBnet/IP Tunnelling is supported by the gateway in all
three specified modes. Upon establishing a communication channel for tun-
nelling, the gateway assigns each tunnelling connection a KNX individ-
ual address. After establishing the communication channel, an EIBnet/IP
client can sendTUNNELINGREQUESTframes containing a KNX/EIB
telegram. In Tunnelling on KNX Data Link Layer mode, only packets from
the KNX bus with the destination address equal to the assigned address are
passed to the EIBnet/IP client. Furthermore, all telegrams on KNX point-
to-multipoint addressing are forwarded to the client. In cEMI Raw mode
and KNX Busmonitor mode all received packets from the KNX network
are passed to the EIBnet/IP client. Due to the fact that two KNX/EIB con-
nections (i.e. two TP-UARTs) are present, a KNX busmonitor tunneling

96



connection can be maintained and at the same time the routing function is
not affected.

4. Routing Layer: The gateway supports EIBnet/IP Routing. Filtering of tele-
grams according to their destination address is possible. KNXcalibur is
able to handle messages from the IP network at 10 MBit/s (if the CS8900A
is used). The KNX bus has a much slower speed and thus messages to KNX
layer have to be queued. The messages are queued immediately after recep-
tion in a buffer. A single message is processed at a time. The buffersize
is configurable inbuffers.h . Currently the gateway features a queue of
20 frames to KNX layer and 5 frames to the IP network. The queue, how-
ever, can overflow resulting in message loss. The gateway then increments a
counter and sends a routing lost message, which can be logged by a central
supervising entity.

5.3.5 cEMI

KNXcalibur’s internal EMI format is cEMI. Messages from the KNX/EIB are
converted to this format to support easy integration into KNX on USB or EIB-
net/IP.

The cEMI handler is responsible for handling incoming cEMI telegrams from
the KNX bus and from the EIBnet/IP layer. Telegrams from the KNX side are
saved in the receiving queue after an interrupt request from the TP-UART handler
and are converted to cEMI before processing. Depending on the gateway state and
the message type, the cEMI message is handled differently. If the gateway is in
routing or tunnelling mode, packets with the corresponding destination addresses
are passed from KNX/EIB Link Layer to the EIBnet/IP layer, which in turn gener-
ates EIBnet/IP frames and passes them to the IP layer. The IP layer then transmits
the package to the IP network. If the EIBnet/IP handler is shutdown, only mes-
sages corresponding to the devices individual address are processed by the cEMI
handler. In this case, the Link Layer is out of function and only Device Manage-
ment via the KNX bus is possible.

The local Device Management layer interprets cEMI management frames, re-
ceived by the KNX bus or by the EIBnet/IP layer. All gateway properties (com-
pliant to [40] Part 3/8/3), like for example KNX individual address and device
name can be configured. The layer is also responsible for generating the correct
responses to the management server. For persistent storage, all data is kept in flash
memory or on the SD/MMC card.

97



5.3.6 Tweety

Tweety [22] is a small, lean EIBnet/IP server and part of the KNXlive project. It is
intended for people interested in their home automation system. Its architecture is
well thought-out and Tweety has been tested to work with the ETS. So firstly the
idea arose to port the software to KNXcalibur. But due to the following concerns,
adapting the existing implementation [60] has been preferred:

• Tweety makes use of mechanisms like shared memory, pipes or semaphores.
These techniques are not available on a microcontroller with limited RAM
and CPU and missing OS. They would have to be emulated, which would
not be very efficient.

• Only a single user is supported.

• Tweety only implements EIBnet/IP Tunnelling on link layer. No routing
or Device Management services are possible. Hence the core and tunneling
layers would have to be merged with the existing solution to support the full
EIBnet/IP specification, which again would not be very efficient.

[60] therefore has been ported to KNXcalibur. It turned out that some bugs were
present in the EIBnet/IP implementation. They have been fixed and now KNX-
calibur supports the EIBnet/IP function of ETS.

98



6 Summary and outlook

The goal of this work was to produce a KNX/EIB gateway with versatile hardware
as well as software interfaces. A compact solution based on a Fujitsu MB90330
microcontroller mounted on a eurocard format PCB has been designed. An ex-
tensible and cheap design with USB, Ethernet, RS232 and SD/MMC card support
has been achieved. The ideas and proposals of [4] (miniaturisation, galvanic iso-
lation of the KNX/EIB bus, implementation of DHCP, . . . ) have been integrated.
The currently implemented low level firmware and network protocol stacks form
a proof of concept for the hardware design.

Nevertheless, the gateway’s firmware is far from being finished and further
extensions to hard- and software are already in the author’s mind:

• The existing stack design has to be improved. IP fragmentation needs to
be implemented to be able to handle large data structures. Moreover, the
web server should be able to server large files directly from the inserted
SD/MMC card.

• The existing stacks, especially the IP stack, need to be secured. Currently
buffer overflows due to manipulated packets are possible. Although lim-
ited possibilities exist to exploit these security flaws effectively, especially
denial of service attacks based on buffer overflows form a severe threat.

• Connecting the inherently insecure KNX/EIB network to the real IP world
is not recommended, as long as security questions like authentication and
authorisation are unanswered. Basic work has been done in [32], but an
existing secure solution does not exist yet. Therefore KNXcalibur should
only be used in a trusted environment with underlying trusted communica-
tion buses. As an extension, cryptographic algorithms can be implemented
and tested on KNXcalibur.

• KNX on USB is currently under development and will be integrated into the
firmware of KNXcalibur.

• To support further extensions of the hardware, two pinheaders have been
placed, which allow mounting of a daughter board in half-eurocard size on
top of KNXcalibur. Extensions like additional LEDs and buttons or attach-
ing an LCD are planned. Moreover, a PEI adapter circuit hardware can be
placed on the daughter board.

99



• Currently the SPI pins of the MB90330 are used by the TP-UARTs and
interrupt pins of the CS8900A. To use the hardware SPI of the MB90330,
it should be possible to use jumpers for configuring the pin mapping. The
reset pins of the TP-UARTs, for instance, should either be connected to the
interrupt pins of the MB90330 or to normal I/Os.

100



List of Figures

1 KNX TP1 BAUs . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2 KNX TP1 standard data frame (from [37]) . . . . . . . . . . . . . 26
3 USB device classes (from [74]) . . . . . . . . . . . . . . . . . . . 28
4 USB topology (from [74]) . . . . . . . . . . . . . . . . . . . . . 29
5 USB pipe-endpoint concept . . . . . . . . . . . . . . . . . . . . . 30
6 KNX on USB frame format . . . . . . . . . . . . . . . . . . . . . 34
7 EIBnet/IP core function . . . . . . . . . . . . . . . . . . . . . . . 40
8 EIBnet/IP frame format . . . . . . . . . . . . . . . . . . . . . . . 43
9 Block diagram MB90F334A . . . . . . . . . . . . . . . . . . . . 52
10 Block diagram CS8900A . . . . . . . . . . . . . . . . . . . . . . 53
11 Block diagram TP-UART . . . . . . . . . . . . . . . . . . . . . . 54
12 KNXcalibur: Hardware block diagram . . . . . . . . . . . . . . . 55
13 KNXcalibur: Eagle3D rendering . . . . . . . . . . . . . . . . . . 57
14 MB90330: Pin assignment . . . . . . . . . . . . . . . . . . . . . 60
15 ISA address decoder logic . . . . . . . . . . . . . . . . . . . . . 62
16 KNXcalibur: Picture . . . . . . . . . . . . . . . . . . . . . . . . 65
17 KNXcalibur: Power supply . . . . . . . . . . . . . . . . . . . . . 66
18 KNXcalibur: Jumper location . . . . . . . . . . . . . . . . . . . . 67
19 Fujitsu Softune Workbench . . . . . . . . . . . . . . . . . . . . . 71
20 Fujitsu MCU Flash Programmer . . . . . . . . . . . . . . . . . . 71
21 Timer callgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
22 UART callgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
23 TP-UART callgraph . . . . . . . . . . . . . . . . . . . . . . . . . 82
24 SD/MMC callgraph . . . . . . . . . . . . . . . . . . . . . . . . . 84
25 CS8900A callgraph . . . . . . . . . . . . . . . . . . . . . . . . . 86
26 TP-UART test tool . . . . . . . . . . . . . . . . . . . . . . . . . 89
27 SD/MMC test tool . . . . . . . . . . . . . . . . . . . . . . . . . . 90
28 USB function test tool . . . . . . . . . . . . . . . . . . . . . . . 91
29 Network protocol stacks functioning principle . . . . . . . . . . . 92
30 Software layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
31 MB90330: Pin function 1/7 (from [30]) . . . . . . . . . . . . . . 115
32 MB90330: Pin function 2/7 (from [30]) . . . . . . . . . . . . . . 116
33 MB90330: Pin function 3/7 (from [30]) . . . . . . . . . . . . . . 117
34 MB90330: Pin function 4/7 (from [30]) . . . . . . . . . . . . . . 118
35 MB90330: Pin function 5/7 (from [30]) . . . . . . . . . . . . . . 119
36 MB90330: Pin function 6/7 (from [30]) . . . . . . . . . . . . . . 120

101



37 MB90330: Pin function 7/7 (from [30]) . . . . . . . . . . . . . . 121
38 MB90330: Memory map (from [30]) . . . . . . . . . . . . . . . . 122
39 KNXcalibur: Schematic 1/4 . . . . . . . . . . . . . . . . . . . . 123
40 KNXcalibur: Schematic 2/4 . . . . . . . . . . . . . . . . . . . . 124
41 KNXcalibur: Schematic 3/4 . . . . . . . . . . . . . . . . . . . . 125
42 KNXcalibur: Schematic 4/4 . . . . . . . . . . . . . . . . . . . . 126
43 KNXcalibur: Component placement top . . . . . . . . . . . . . . 130
44 KNXcalibur: Component placement bottom . . . . . . . . . . . . 131
45 KNXcalibur: Picture . . . . . . . . . . . . . . . . . . . . . . . . 132
46 KNXcalibur: Picture . . . . . . . . . . . . . . . . . . . . . . . . 133

102



List of Tables

1 KNX/EIB device classification . . . . . . . . . . . . . . . . . . . 15
2 KNX/EIB gateways (based on [49] and [48]) . . . . . . . . . . . 19
3 Comparison TP1 bus attachment units . . . . . . . . . . . . . . . 23
4 KNX HID USB class interface . . . . . . . . . . . . . . . . . . . 32
5 EIBlib/IP request telegram . . . . . . . . . . . . . . . . . . . . . 37
6 EIBlib/IP response telegram . . . . . . . . . . . . . . . . . . . . 37
7 MB90330: Mode pin settings . . . . . . . . . . . . . . . . . . . . 61
8 KNXcalibur: Jumper settings . . . . . . . . . . . . . . . . . . . . 68
9 KNXcalibur: Port connections . . . . . . . . . . . . . . . . . . . 69
10 KNXcalibur: Overview of software files . . . . . . . . . . . . . . 78
11 KNXcalibur: Part list . . . . . . . . . . . . . . . . . . . . . . . . 129

103



Acronyms

A/D Analog / Digital

ARP Address Resolution Protocol

BACnet Building Automation and Control Networking Protocol

BAS Building Automation System

BAU Bus Attachment Unit

BCU Bus Coupling Unit

BIM Bus Interface Module

BootP Boot Protocol

CAN Controller Area Network

CCMS Centralised Control and Monitoring System

cEMI common External Message Interface

CN Control Network

CID Card Identification Data

CPU Central Processing Unit

CRC Cyclical Redundancy Check

CRD Connection Response Data Block

CRI Connection Request Information

CSD Card Specific Data

CSMA Carrier Sense Multiple Access

DHCP Dynamic Host Configuration Protocol

DIB Description Information Block

DIP Dual In-line Package

104



EEPROM Electrically Erasable Programmable ROM

EMC ElectroMagnetic Compatibility

EMI External Message Interface

EMI Electromagnetic Interference

ETS EIB Tool Software

FAT File Allocation Table

FUFA Fujitsu USB firmware API

FUMA Fujitsu USB mini host API

HAS Home Automation System

HID Human Interface Device

HPAI Host Protocol Address Information

HTTP Hypertext Transfer Protocol

HVAC Heating, Ventilation and Air conditioning

I/O Input / Output

I2C Inter-IC

IACK Immediate Acknowledgement

IC Integrated Circuit

ICMP Internet Control Message Protocol

ICR Interrupt Control Register

iETS EIBlib/IP

IGMP Internet Group Management Protocol

IP Internet Protocol

IPR Intellectual Property Rights

105



ISA Industry Standard Architecture

ISR Interrupt Service Routine

KNX Konnex

KNX/EIB European Installation Bus

LED Light Emitting Diode

LON LONWorks

LQFP Low-profile Quad Flat Pack

MAC Medium Access Control

MCU Micro Controller Unit

MTU Maximum Transfer Unit

OS Operating System

OSGi Open Services Gateway initiative

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PEI Physical External Interface

PLC Programmable Logic Controller

PPG Pulse Pattern Generator

PWC Pulse Width Count

RAM Random Access Memory

RARP Reverse Address Resolution Protocol

RCD Residual Current Device

RF Radio Frequency

RJ-45 Registered Jack - 45

106



ROM Read Only Memory

SCADA Supervisory Control And Data Acquisition

SD/MMC Secure Digital / Multimedia Card

SLIP Serial Line Internet Protocol

SMD Surface Mounted Design

SOIC Small-Outline Integrated Circuit

SPI Serial Peripheral Interface

TCP Transmission Control Protocol

TP-UART Twisted Pair - Universal Asynchronous Receive Transmit

TP Twisted Pair

TQFP Thin Quad Flat Pack

UART Universal Asynchronous Receive Transmit

UDP User Datagram Protocol

USB Universal Serial Bus

VCC Voltage at the Common Collector

VPN Virtual Private Network

107



References

[1] Accemic GmbH & Co. KG. [Online]. Available: http://www.accemic.com/

[2] C. E. Adams, “Home Area Network Technologies,”BT Technology Journal,
vol. 20, no. 2, pp. 53–72, 2002.

[3] Single Channel, High Speed Optocouplers, Agilent Technologies, 2001,
Data Sheet. 5988-4111EN.

[4] O. Alt, “Entwurf und Realisierung einer EIB zu Ethernet Brücke (EIB-
Gateway) in Hard- und Software,” Tech. Rep., 2002.

[5] ——, “Entwicklung eines Softwaresystems zur Planung und Inbetriebnahme
von Geb̈audeautomationssystemen,” Master’s thesis, Technische Universität
Darmstadt, 2003.

[6] Control Network Protocol Specification, ANSI/EIA/CEA Std. 709.1, Rev.
A, 1999.

[7] Control Network Protocol Specification, ANSI/EIA/CEA Std. 709.1, Rev. B,
2002.

[8] Tunneling Component Network Protocols Over Internet Protocol Channels,
ANSI/EIA/CEA Std. 852, 2002.

[9] BACnet - A Data Communication Protocol for Building Automation and
Control Networks, ANSI/EIA/CEA Std. 135, 2004.

[10] D. Bodas,Crystal LAN CS8900A Ethernet Controller Technical Reference
Manual, Cirrus Logic, 2001, Data Sheet.

[11] P. M. Bull, P. R. Benyon, and P. R. Limb, “Residential Gateways,”BT Tech-
nology Journal, vol. 20, no. 2, pp. 73–81, 2002.

[12] S. T. Bushby, “BACnet: a standard communication infrastructure for intel-
ligent buildings,” inAutomation in Construction, vol. 6, no. 5-6, 1997, pp.
529–540.

[13] CadSoft,EAGLE Handbook 4.1, 2004.

[14] CadSoft,EAGLE Training Handbook 4.1, 2004.

108

http://www.accemic.com/


[15] B. Cain, S. E. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan,
“Internet Group Management Protocol, Version 3,” Internet Engineering
Task Force, RFC 3376, Oct. 2002. [Online]. Available: http://www.
rfc-editor.org/rfc/rfc3376.txt

[16] CS8900A Frequently Asked Questions, Cirrus Logic, 2002, AN205.

[17] Crystal LAN CS8900A Product Data Sheet, Cirrus Logic, 2004, Data Sheet.

[18] Domoport. [Online]. Available: http://www.domoport.de/

[19] R. Droms, “Dynamic Host Configuration Protocol,” Internet Engineering
Task Force, RFC 1531, Oct. 1993. [Online]. Available: http://www.
rfc-editor.org/rfc/rfc1531.txt

[20] Interface Between Data Terminal Equipment and Data Circuit-Terminating
Equipment Employing Serial Binary Data Interchange, EIA Std. 232E,
1991.

[21] Home and Building Electronic Systems (HBES), EN Std. 50 090, 1994-2004.

[22] B. Erb, G. Neugschwandtner, W. Kastner, and M. Kögler, “Open-source
foundations for PC based KNX/EIB access and management,” inKonnex
Scientific Conference. Technische Universität Wien, Institut f̈ur Automa-
tion, 2005.

[23] P. Fischer, “Analyse und Bewertung von Kommunikationssystemen in der
Geb̈audeautomation,” Ph.D. dissertation, Technische Universität Wien, In-
stitut für Computertechnik, 2002.

[24] F2MC-16LX Family - Programming Flash MCUs, Fujitsu Microelectronics
Europe, 1999, Data Sheet. AN-FMEMCU-900031-22.

[25] F2MC-16LX Family - EMC Design Guide, Fujitsu Microelectronics Europe,
2000, Data Sheet.

[26] F2MC-16LX Family - External Businterface, Fujitsu Microelectronics Eu-
rope, 2000, Data Sheet. FMEMCU-AN-900034-19.

[27] F2MC-16LX Family - Hardware set up, Fujitsu Microelectronics Europe,
2003, Data Sheet. FMEMCU-AN-900095-10.

109

http://www.rfc-editor.org/rfc/rfc3376.txt
http://www.rfc-editor.org/rfc/rfc3376.txt
http://www.domoport.de/
http://www.rfc-editor.org/rfc/rfc1531.txt
http://www.rfc-editor.org/rfc/rfc1531.txt


[28] F2MC-16LX Family - Programming Flash MCUs 2, Fujitsu Microelectron-
ics Europe, 2003, Data Sheet. FMEMCU-AN-900095-10.

[29] MB90330 series Data Sheet, Fujitsu Microelectronics Europe, 2005, Data
Sheet.

[30] MB90330 series Hardware Manual, Fujitsu Microelectronics Europe, 2005,
Data Sheet.

[31] EVBMB90F337 Manual, GLYN GmbH & Co KG, Microcontroller Group,
2005, Data Sheet.

[32] W. Granzer, “Security in Networked Building Automation Systems,” Mas-
ter’s thesis, Technische Universität Wien, Institut f̈ur Automation, 2005.

[33] Telecontrol equipment and systems. Part 5: Transmission protocols, IEC Std.
60 870-5, 1990.

[34] Building Automation and Control Systems (BACS) - Part 5: Data Communi-
cation Protocol, ISO Std. 16 484-5, 2003.

[35] D. L. Jones, PCB Design Tutorial Rev. A, 2004. [Online]. Available:
http://www.alternatezone.com/

[36] W. Kastner and G. Neugschwandtner, “Service Interfaces for Field-Level
Home and Building Automation,” in5th IEEE International Workshop on
Factory Communication Systems, September 2004, pp. 103–112.

[37] ——, “EIB: European Installation Bus,” inThe Industrial Communication
Technology Handbook, ser. The Industrial Information Technology Series.
CRC Press, 2005, vol. 1, ch. 34.

[38] W. Kastner, G. Neugschwandtner, S. Soucek, and H. M. Newman, “Com-
munication Systems for Building Automation and Control,” inProceedings
of the IEEE, vol. 93, no. 6, June 2005, pp. 1178–1203.

[39] A. Kethler and M. Neujahr,Leiterplattendesign mit EAGLE, 1st ed. mitp-
Verlag, 2004.

[40] KNX Handbook 1.1 and KNX Standard Extensions, Konnex Association,
Brussels, 2004.

110

http://www.alternatezone.com/


[41] H. R. Kranz,BACnet Geb̈audeautomation 1.4. Promotor, 2005.

[42] M. Kögler, “Free Development Environment for Bus Coupling Units of the
European Installation Bus,” Master’s thesis, Technische Universität Wien,
Institut für Automation, 2005.

[43] W. Lawrenz,CAN - Controller Area Network. Hüthig, 1997.

[44] D. Loy, D. Dietrich, and H. S. (Ed.),Open Control Networks. Kluwer
Academic, 2001.

[45] 3.0V to 5.5V, Low-Power, up to 1Mbps, True RS-232 Transceivers Using
Four 0.1µF External Capacitors, Maxim Integrated Products, 1996, Data
Sheet. 19-0273 Rev. 4.

[46] M. Mevenkamp and M. Mayer, “Energy efficiency in educational buildings
using KNX/EIB,” in Konnex Scientific Conference, 2005.

[47] Single port up-right USB connector, Molex Taiwan LTD., Data Sheet. SDA-
89485-000.

[48] EIB Markt GmbH. [Online]. Available: http://www.eibmarkt.com/

[49] KNX/EIB Online Shop. [Online]. Available: http://www.knx-online-shop.
de/

[50] Beta LAYOUT GmbH - PCB-POOL. [Online]. Available: http://www.
pcbpool.de/

[51] D. Petrov, “WWW server in a chip,” 2001. [Online]. Available:
http://www.sxlist.com/techref/piclist/petrovwwwpic/index.htm

[52] Hex inverter, Philips Semiconductors, 1997, Data Sheet. 74LVC04A.

[53] Quad 2-input OR gate, Philips Semiconductors, 1997, Data Sheet.
74LVC32A.

[54] Octal D-type transparent latch with 5-volt tolerant inputs/outputs (3-State),
Philips Semiconductors, 1998, Data Sheet. 74LVC573A.

111

http://www.eibmarkt.com/
http://www.knx-online-shop.de/
http://www.knx-online-shop.de/
http://www.pcbpool.de/
http://www.pcbpool.de/
http://www.sxlist.com/techref/piclist/petrovwwwpic/index.htm


[55] D. C. Plummer, “Ethernet Address Resolution Protocol: Or converting
network protocol addresses to 48 bit Ethernet address for transmission on
Ethernet hardware,” Internet Engineering Task Force, RFC 826, Nov. 1982.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc826.txt

[56] J. B. Postel, “User Datagram Protocol,” Internet Engineering Task Force,
RFC 768, Aug. 1980. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc768.txt

[57] ——, “Internet Control Message Protocol,” Internet Engineering Task
Force, RFC 792, Sept. 1981. [Online]. Available: http://www.rfc-editor.org/
rfc/rfc792.txt

[58] ——, “Internet Protocol,” Internet Engineering Task Force, RFC 791, Sept.
1981. [Online]. Available: http://www.rfc-editor.org/rfc/rfc791.txt

[59] ——, “Transmission Control Protocol,” Internet Engineering Task Force,
RFC 793, Sept. 1981. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc793.txt

[60] F. Praus, W. Kastner, and O. Alt, “Yet Another All-purpose EIBNet/IP Gate-
way,” in Konnex Scientific Conference. Technische Universität Wien, Insti-
tut für Automation, 2004.

[61] J. Romkey, “Nonstandard for transmission of IP datagrams over serial
lines: SLIP,” RFC 1055 (Standard), Tech. Rep. 1055, June 1988. [Online].
Available: http://www.ietf.org/rfc/rfc1055.txt

[62] C. Sahm,EIBlib/IP protocol Specification Version 1.1, Konnex Association,
Brussels, 2004.

[63] T. Saito, I. Tomoda, Y. Takabatake, K. Teramoto, and K. Fujimoto, “Gateway
Technologies for Home Network and Their Implementations,” in21st Inter-
national Conference on Distributed Computing Systems, 2001, pp. 175–180.

[64] T. Sauter, “The smart Fridge - A Networked Appliance,” inFieldbussystems
and their Applications, 2001, pp. 161–164.

[65] ——, “Integration Aspects in Automation - a Technology Survey,” in10th
IEEE International Conference on Emerging Technologies and Factory Au-
tomation, vol. 2, 2005, pp. 255–263.

112

http://www.rfc-editor.org/rfc/rfc826.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc792.txt
http://www.rfc-editor.org/rfc/rfc792.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc1055.txt


[66] MMC/SD - Description of HITACHI, Data Sheet. [Online]. Available: http:
//www.ulrichradig.de/site/atmel/avrmmcsd/pdf/hitachihb28b128mm2.pdf

[67] MMC/SD bus timing, Data Sheet. [Online]. Available: http://www.
ulrichradig.de/site/atmel/avrmmcsd/pdf/MMCSDTimming.pdf

[68] EIB-TP-UART-IC, Siemens, 10 2001, Data Sheet.

[69] Very low drop voltage regulators with inhibit, STMicroelectronics, 1998,
Data Sheet. LF00AB/C.

[70] A. S. Tanenbaum and M. V. Steen,Distributed Systems: Principles and
Paradigms. Prentice Hall, 2002.

[71] Thesycon Systemsoftware & Consulting GmbH. [Online]. Available:
http://www.thesycon.de/

[72] C. Troger, “Realtime-Linux Device-Treiber für den europ̈aischen Installa-
tionsbus,” Master’s thesis, Technische Universität Wien, 2002.

[73] Single RJ45 connector module with integrated 10 base T magnetics and
LEDs, Umec elektronische Komponenten GmbH, 2002, Data Sheet. UE-
LT1S023A-34.

[74] “USB Specification Version 2.0.” [Online]. Available: http://www.usb.org/
developers/docs.html

[75] “On-The-Go Supplement to the USB 2.0 Specification.” [Online]. Available:
http://www.usb.org/developers/onthego/

[76] A. Zaffran, “Physiktabellen: Kupferbreite - Strombelastbarkeit - Widerstand
- Isolation - Temperaturabhängigkeit,” 2003. [Online]. Available: ftp:
//ftp.cadsoft.de/pub/userfiles/doc/physik-tabellen-pcb.zip

113

http://www.ulrichradig.de/site/atmel/avr_mmcsd/pdf/hitachi_hb28b128mm2.pdf
http://www.ulrichradig.de/site/atmel/avr_mmcsd/pdf/hitachi_hb28b128mm2.pdf
http://www.ulrichradig.de/site/atmel/avr_mmcsd/pdf/MMCSDTimming.pdf
http://www.ulrichradig.de/site/atmel/avr_mmcsd/pdf/MMCSDTimming.pdf
http://www.thesycon.de/
http://www.usb.org/developers/docs.html
http://www.usb.org/developers/docs.html
http://www.usb.org/developers/onthego/
ftp://ftp.cadsoft.de/pub/userfiles/doc/physik-tabellen-pcb.zip
ftp://ftp.cadsoft.de/pub/userfiles/doc/physik-tabellen-pcb.zip


A Appendix

A.1 Internet links

[KNXcalibur project homepage],http://www.KNXcalibur.praus.at/
[TU-Wien], http://www.auto.tuwien.ac.at/knx/

[Fujitsu microcontrollers],http://www.fme.gsdc.de/gsdc.htm
[Fujitsu Softune workbench],http://www.fme.gsdc.de/products/softune0.htm
[Thesycon Systemsoftware & Consulting GmbH],http://www.thesycon.de/

[AVR Ethernet],http://www.ispf.de/modules.php?name=News&file=article&sid=5&page=0
[Bascom-AVR], http://members.home.nl/bzijlstra/software/examples/RTL8019as.htm
[BASys], http://www.basys2003.org/
[Eagle 3D], http://www.matwei.de/doku.php?id=en:eagle3d:eagle3d
[EIB Userclub], http://www.eib-userclub.de/
[Ethernut], http://www.ethernut.de
[Gradwohl Zoltan],http://www.mikrocontroller.net/forum/read-4-214168.html
[Radig Ulrich], http://www.ulrichradig.de/

[ABB], http://www.abb.de/
[Adyna Technology GmbH],http://www.adyna-tec.de/
[Amann GmbH], http://www.amann-net.de/
[Aston GmbH], http://www.aston-iport.de/
[b.a.b-technologie gmbh],http://www.bab-tec.de/
[Daetwyler Cables+Systems],http://www.daetwyler.net/
[Disch GmbH], http://disch-systems.de/
[Domoport], http://www.adyna-tec.de/
[EIB Markt GmbH], http://www.eibmarkt.com/
[ELKA Elektronik GmbH], http://www.elka.de/
[ESF Software GmbH],http://www.esf-software.com/
[Gira homeserver],http://dacom-homeautomation.de/
[Hager], http://www.hager.de/
[IT–Gesellschaft f̈ur Informationstechnik],http://www.it-gmbh.de/
[Albrecht Jung GmbH & Co. KG],http://www.jung.de/
[KNX/EIB Online Shop], http://www.knx-online-shop.de/
[NETxAutomation Software GmbH],http://netxautomation.com/
[Schlaps&Partner],http://www.schlaps-automation.de/

114



A.2 MB90330: Pin description

Figure 31: MB90330: Pin function 1/7 (from [30])

115



Figure 32: MB90330: Pin function 2/7 (from [30])

116



Figure 33: MB90330: Pin function 3/7 (from [30])

117



Figure 34: MB90330: Pin function 4/7 (from [30])

118



Figure 35: MB90330: Pin function 5/7 (from [30])

119



Figure 36: MB90330: Pin function 6/7 (from [30])

120



Figure 37: MB90330: Pin function 7/7 (from [30])

121



A.3 MB90330: Memory map

Figure 38: MB90330: Memory map (from [30])

122



A.4 KNXcalibur: Schematic diagram

Figure 39: KNXcalibur: Schematic 1/4

123



Figure 40: KNXcalibur: Schematic 2/4

124



Figure 41: KNXcalibur: Schematic 3/4

125



Figure 42: KNXcalibur: Schematic 4/4

126



A.5 KNXcalibur: Part list

Am-
ount

Value Device Component RS/Farnell-
Item nr.

1 PINHD-2X4 POWER 251-8648
2 PINHD-2X30 CON1, CON2 251-8648
1 0R R-EU R1206 R45 351-3199
2 1N4004 1N4004 D4, D5 261-176
1 1N4448 1N4446 D2 885101
3 1k R-EU R1206 R2, R8, R38 223-2265
1 1k5 R-EU R1206 R11 223-2287
2 2k7 R-EU R1206 R1, R37 223-2322
1 3.3V LED3MM LED3 228-4979
2 4,9152MHz CRYTALHC49U-V Q1, Q6 657-577
2 4k7 R-EU R1206 R30, R33 223-2350
1 4k99,1% R-EU R0805 R32 215-3162
1 5V LED3MM LED2 228-4979
2 6.8µ CPOL-EU153CLV-

0405
C8, C40 197-8386

1 6MHz CRYTALHC49U-V Q3 657-583
2 8 R-EU 0207/10 R31, R36 477-7552
3 10k R-EU R1206 R18, R19, R20 223-2394
4 10n C-EUC1206 C7, C10, C42, C43 464-6830
1 10µ/10V CPOL-EUE2-5 C25 228-6622
2 15 R-EU R1206 R4, R5 223-2013
2 15k R-EU R1206 R6, R7 223-2417
1 20MHz CRYTALHC49U-V Q5 657-656
6 22p C-EUC1206 C13, C14, C15, C16,

C17, C18
464-6751

8 27k R-EU R1206 R12, R13, R16, R17,
R39, R40, R43, R44

223-2445

1 32,768kHz CRYTALTC26V Q4 226-1443
2 33 R-EU 0207/10 R9, R10 477-7619
1 33p C-EUC1206 C12 464-6773
2 47k R-EU R1206 R22, R25 223-2489
4 47n C-EUC1206 C5, C6, C38, C39 464-6925

127



1 47µ CPOL-EUE2-5 C11 228-6751
2 68/1W R-EU 0411/3V R3, R35 131-766
2 74HC573D 74HC573D IC4, IC5 380-0544
1 100 R-EU R1206 R34 223-2120
4 100k R-EU R1206 R23, R24, R46, R47 223-2524
25 100n C-EUC1206 C1, C2, C3, C4,

C19, C20, C21, C22,
C23, C24, C26, C27,
C28, C29, C30, C31,
C33, C34, C35, C36,
C44, C45, C46, C47,
C48

464-6852

2 100µ CPOL-EU153CLV-
0807

C9, C41 367-9615

1 220µF/35V CPOL-EUE3.5-8 C37 228-6773
4 270 R-EU R1206 R21, R26, R28, R29 223-2170
1 470 R-EU R1206 R27 223-2215
1 560p C-EUC0805 C32 211-3316
4 680 R-EU R1206 R14, R15, R41, R42 223-2237
1 7404SO14 7404SO14 V6 177-6045
2 7432 7432 V4, V5 380-0392
1 Analog JP3Q JP7 251-8648
1 Aux Power NSP-BUCHSE X3 486-662
2 BC547 BC547 T1, T2 296-087
1 BC557B BC557B Q2 348-9456
2 BYG21M DIODE-DO214AC D8, D9 995435
1 CS8900 CS8900A IC3 491-5726
1 CTS0/RXD1 JP2E JP17 251-8648
1 EIB JP2Q JP15 251-8648
2 FFKD2 FFKD2 KNX0, KNX1 101-7015+

101-7037
4 HCPL2531 HCPL2530 OK9, OK10, OK11,

OK12
3598986

1 INT JP4Q JP11 251-8648
1 LF33CV LM340H-05 IC2 355-4128
1 LF50CV LM340H-05 IC6 355-4257

128



1 MAX3232 JP4Q JP1 251-8648+
251-8503

1 MAX3232CPE MAX3232CPE IC1 189-1453
1 MB90F330 MB90F330M21 U$1 /
1 MD1 JP1E JP5 251-8648
1 MODE1/X1 JP3Q JP13 251-8648
1 Mode JP2E JP6 105-6341
1 P6X DC JP2Q JP8 251-8648
1 P60/P61 JP2QE JP10 251-8648
1 Power DIP02YL S2 103-0743
1 Programming LED3MM LED1 228-4979
1 Reset DTS-3 S1 378-6303
1 SD/MMC JP2Q JP9 251-8648
1 SD/MMC SD MMC SOCK SDCMF-

10915W010
4381592

2 SMBJ40CA DIODE-DO214AC D1, D7 486-1691
2 TP-UART TP-UART TPUART1,

TPUART2
/

1 TPUART1 JP4Q JP2 251-8648
1 TPUART2 JP4Q JP14 251-8648
1 TXD1/RTS0 JP2E JP16 251-8648
1 UART0 F09H X1 259-3330
1 UART1 F09H X2 259-3330
1 UE-

LT1S023A-
34

UE-LT1S023A-34 ETH10 /

1 USB JP6Q JP3 251-8648
1 USB Mini

Host
USB CONA-V USB1 418-0194

1 USB Slave USB CONB USB2 458-1648
1 USB Mode JP2E JP4 251-8648

Table 11: KNXcalibur: Part list

129



A.6 KNXcalibur: Component placement

Figure 43: KNXcalibur: Component placement top

130



Figure 44: KNXcalibur: Component placement bottom

131



A.7 KNXcalibur: Board

Figure 45: KNXcalibur: Picture

132



Figure 46: KNXcalibur: Picture

133


	Introduction
	Home and Building Automation
	KNX/EIB overview
	KNX/EIB device classes and market overview
	Interaction devices
	Routers
	Gateways
	PC-based

	Outlook on remaining sections

	Interfaces
	Serial interfacing
	BCU
	BIM
	TP-UART

	USB interfacing
	Introduction to USB
	KNX on USB

	IP interfacing
	EIBlib/IP
	EIBnet/IP


	Requirements
	Hardware
	Microcontroller
	Ethernet controller
	KNX/EIB connection
	USB support
	Additional components

	Software
	Development
	Implementation


	Hardware
	Selection of components
	Microcontroller
	Ethernet controller
	KNX/EIB connection

	Design
	PCB design
	Power supply
	MB90F334A
	CS8900A
	RS232
	TP-UART
	USB connection
	SD/MMC card connection

	Usage

	Software
	Initialisation and usage
	Development tools
	Usage

	Low level firmware
	Timer
	UART
	TP-UART
	SD/MMC
	CS8900A
	USB
	Test tools

	Network protocol stacks
	IP
	Webserver
	BASys integration
	EIBnet/IP
	cEMI
	Tweety


	Summary and outlook
	List of Figures
	List of Tables
	Acronyms
	References
	Appendix
	Internet links
	MB90330: Pin description
	MB90330: Memory map
	KNXcalibur: Schematic diagram
	KNXcalibur: Part list
	KNXcalibur: Component placement
	KNXcalibur: Board


		2005-11-14T19:38:42+0100
	Friedrich Praus
	Ich bin der Verfasser dieses Dokuments




